精英家教网 > 高中数学 > 题目详情
已知点P(-1,
3
2
)是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆C的左、右焦点,O是坐标原点,PF1⊥x轴.
①求椭圆C的方程;
②设A、B是椭圆C上两个动点,满足
PA
+
PB
PO
(0<λ<4,且λ≠2)求直线AB的斜率.
①∵PF1⊥x轴,∴c=1,把点P(-1,
3
2
)代入椭圆的方程得
1
a2
+
9
4b2
=1
,又a2-b2=c2=1,联立解得a2=4,b2=3.
∴椭圆C的方程为
x2
4
+
y2
3
=1

②设直线y=kx+m,联立
y=kx+m
x2
4
+
y2
3
=1
,化为(3+4k2)x2+8kmx+4m2-12=0,
∵直线AB与椭圆有两个不同的交点,∴△=64k2m2-4(3+4k2)(4m2-12)>0,化为3+4k2-m2>0.(*)
x1+x2=-
8km
3+4k2

∵满足
PA
+
PB
PO
(0<λ<4,且λ≠2),
(x1+1,y1-
3
2
)
+(x2+1,y2-
3
2
)
=λ(1,-
3
2
)

∴x1+x2+2=λ,y1+y2-3=-
3
2
λ

又y1+y2=kx1+m+kx2+m=k(x1+x2)+2m,
k(x1+x2)+2m-3=-
3
2
(x1+x2+2)

(k+
3
2
)(x1+x2)
+2m=0,
(k+
3
2
-8km
3+4k2
+2m=0

化为m(2k-1)=0,
若m=0,则直线AB经过原点,此时
PA
+
PB
=2
PO
,λ=2,不符合题意,因此m≠0.
∴2k-1=0,解得k=
1
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
2
2
),且离心率为
2
2
,过点B(2,0)的直线l与椭圆交于不同的两点M、N.
(Ⅰ)求椭圆的方程;
(Ⅱ)求
.
BM
.
BN
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2c;若以F2为圆心,b-c为半径作圆F2,过椭圆上任一点P(x0,y0)作此圆的切线,切点为T,且|PT|的最小值不小于
3
2
(a-c).
(Ⅰ)证明:|PF2|的最小值为a-c;
(Ⅱ)求椭圆的离心率e的取值范围;
(Ⅲ)若椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为2的直线l与椭圆交于A、B两点,若OA⊥OB,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面内一点P与两个定点F1(-
3
,0)
F2(
3
,0)
的距离的差的绝对值为2.
(Ⅰ)求点P的轨迹方程C;
(Ⅱ)设过(0,-2)的直线l与曲线C交于A,B两点,且OA⊥OB(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=6x,过点p(3,1)引一条弦p1p2使它恰好被点p平分,求这条弦所在直线方程及|p1p2|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
45
+
y2
20
=1
的焦点分别为F1和F2,过原点O作直线与椭圆相交于A,B两点.若△ABF2的面积是20,则直线AB的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线y=kx+b与椭圆
x2
4
+y2
=1交于A,B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1,F2是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的焦点,P为椭圆上的点,PF1⊥OX轴,且OP和椭圆的一条长轴顶点A和短轴顶点B的连线AB平行.
(1)求椭圆的离心率e
(2)若Q是椭圆上任意一点,证明∠F1QF2
π
2

(3)过F1与OP垂直的直线交椭圆于M,N,若△MF2N的面积为20
3
,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.设直线PF1、PF2的斜率分别为k1、k2
(Ⅰ)证明:
1
k1
-
3
k2
=2

(Ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案