精英家教网 > 高中数学 > 题目详情
已知抛物线y2=6x,过点p(3,1)引一条弦p1p2使它恰好被点p平分,求这条弦所在直线方程及|p1p2|.
设P1(x1,y1),P2(x2,y2).
y12=6x1
y22=6x2
,①-②得(y1+y2)(y1-y2)=6(x1-x2).
y1-y2
x1-x2
=3
.即kP1P2=3
所以过P(3,1)的直线方程为y-1=3(x-3),即3x-y-8=0;
再由
y2=6x
3x-y-8=0
,得y2-2y-16=0.
则y1+y2=2,y1y2=-16.
所以|P1P2|=
1+
1
9
(y1+y2)2-4y1y2
=
10
9
22+64
=
2
3
170
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
3
2
),F1,F2分别为椭圆C的左右焦点,且离心率e=
1
2

(1)求椭圆C的方程.
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=-
1
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在x轴上的椭圆的离心率为
2
2
,F1,F2为其焦点,一直线过点F1与椭圆相交于A、B两点,且△F2AB的最大面积为
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线方程为y2=8x.直线l1过抛物线的焦点F,且倾斜角为45°,直线l1与抛物线相交于C、D两点,O为原点.
(1)写出直线l1方程
(2)求CD的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线C:y2=2px(p>0)上横坐标为4的点到焦点的距离为5.
(Ⅰ)求抛物线C的方程;
(Ⅱ)设直线y=kx+b与抛物线C交于两点A(x1,y1),B(x2,y2),且|y1-y2|=a(a为正常数).过弦AB的中点M作平行于x轴的直线交抛物线C于点D,连接AD、BD得到△ABD.
(i)求实数a,b,k满足的等量关系;
(ii)△ABD的面积是否为定值?若为定值,求出此定值;若不是定值,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(-1,
3
2
)是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆C的左、右焦点,O是坐标原点,PF1⊥x轴.
①求椭圆C的方程;
②设A、B是椭圆C上两个动点,满足
PA
+
PB
PO
(0<λ<4,且λ≠2)求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=
4
3
,|PF2|=
14
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过点M(-2,1),交椭圆C于A,B两点,且M恰是A,B中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

附加题:已知半椭圆
x2
a2
+
y2
b2
=1(x≥0)
与半椭圆
y2
b2
+
x2
c2
=1(x≤0)
组成的曲线称为“果圆”,其中a2=b2+c2,a>b>c>0,F0、F1、F2是对应的焦点.
(1)(文)若三角形F0F1F2是边长为1的等边三角形,求“果圆”的方程.
(2)(理)当|A1A2|>|B1B2|时,求
b
a
的取值范围.

查看答案和解析>>

同步练习册答案