精英家教网 > 高中数学 > 题目详情
附加题:已知半椭圆
x2
a2
+
y2
b2
=1(x≥0)
与半椭圆
y2
b2
+
x2
c2
=1(x≤0)
组成的曲线称为“果圆”,其中a2=b2+c2,a>b>c>0,F0、F1、F2是对应的焦点.
(1)(文)若三角形F0F1F2是边长为1的等边三角形,求“果圆”的方程.
(2)(理)当|A1A2|>|B1B2|时,求
b
a
的取值范围.
(1)∵F0(c,0),F1(0,-
b2-c2
)
F2(0,
b2-c2
)

|F0F1|=
(b2-c2)+c2
=b=1
|F1F2|=2
b2-c2
=1

于是c2=
3
4
a2=b2+c2=
7
4

所求“果圆”方程为
4
7
x2+y2=1
(x≥0)和y2+
4
3
x2=1
(x≤0).
(2)由题意,得a+c>2b,c>2b-a,即
a2-b2
>2b-a

两边平方得a2-b2>(2b-a)2,得
b
a
4
5

又b>c,b,
∴b2>c2,b2>a2-b2
b2
a2
1
2

b
a
∈(
2
2
4
5
)
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线y2=6x,过点p(3,1)引一条弦p1p2使它恰好被点p平分,求这条弦所在直线方程及|p1p2|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线C的离心率为
2
3
3
,一条准线方程为x=
3
2

(1)求双曲线C的标准方程
(2)若直线l:y=kx+
2
与双曲线C恒有两个不同的交点A和B,且
OA
OB
>2
(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜率为1的直线l过椭圆
x2
4
+y2=1
的右焦点F2
(1)求直线l的方程;
(2)若l与椭圆交于点A、B两点,F1为椭圆左焦点,求SF1AB

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

三角形ABC的两顶点A(-2,0),B(0,-2),第三顶点C在抛物线y=x2+1上,求三角形ABC的重心G的轨迹.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.设直线PF1、PF2的斜率分别为k1、k2
(Ⅰ)证明:
1
k1
-
3
k2
=2

(Ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上.若椭圆上的点A(1,
3
2
)
到焦点F1、F2的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标.
(2)过点Q(1,0)的直线与椭圆交于两点M、N,当△OMN的面积取得最大值时,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y2=4x的一条弦被点A(4,2)平分,那么这条弦所在的直线方程式为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的焦点为F1(-1,0)、F2(1,0),点P(-1,
2
2
)在椭圆上.
(1)求椭圆C的方程;
(2)若抛物线E:y2=2px(p>0)与椭圆C相交于点M、N,当△OMN(O是坐标原点)的面积取得最大值时,求P的值.
(3)在(2)的条件下,过点F2作任意直线l与抛物线E相交于点A、B两点,则直线AF1与直线BF1的斜率之和是否为定值?若是,求出定值;若不是,说明理由.

查看答案和解析>>

同步练习册答案