精英家教网 > 高中数学 > 题目详情
如图,直线y=kx+b与椭圆
x2
4
+y2
=1交于A,B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.
(Ⅰ)设点A的坐标为(x1,b),点B的坐标为(x2,b),
x2
4
+b2=1
,解得x1,2=±2
1-b2

所以S=
1
2
b•|x1-x2|
=2b•
1-b2
≤b2+1-b2=1.
当且仅当b=
2
2
时,S取到最大值1.

(Ⅱ)由
y=kx+b
x2
4
+y2=1

(k2+
1
4
)x2+2kbx+b2-1=0
,①
△=4k2-b2+1,
|AB|=
1+k2
•|x2-x1|
=
1+k2
4k2-b2+1
1
4
+k2
=2
.②
设O到AB的距离为d,则d=
2S
|AB|
=1

又因为d=
|b|
1+k2

所以b2=k2+1,代入②式并整理,得k4-k2+
1
4
=0

解得k2=
1
2
b2=
3
2
,代入①式检验,△>0,
故直线AB的方程是y=
2
2
x+
6
2
y=
2
2
x-
6
2
y=-
2
2
x+
6
2
,或y=-
2
2
x-
6
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知抛物线方程为y2=8x.直线l1过抛物线的焦点F,且倾斜角为45°,直线l1与抛物线相交于C、D两点,O为原点.
(1)写出直线l1方程
(2)求CD的长度.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点P(-1,
3
2
)是椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)上一点,F1、F2分别是椭圆C的左、右焦点,O是坐标原点,PF1⊥x轴.
①求椭圆C的方程;
②设A、B是椭圆C上两个动点,满足
PA
+
PB
PO
(0<λ<4,且λ≠2)求直线AB的斜率.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆
x2
16
+
y2
4
=1
内的点M(1,1)为中点的弦所在直线方程为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)的两个焦点为F1,F2,点P在椭圆C上,且PF1⊥F1F2,|PF1|=
4
3
,|PF2|=
14
3

(Ⅰ)求椭圆C的方程;
(Ⅱ)若直线l过点M(-2,1),交椭圆C于A,B两点,且M恰是A,B中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知直线l:y=3x+2过抛物线y=ax2(a>0)的焦点.
(1)求抛物线方程;
(2)设抛物线的一条切线l1,若l1l,求切点坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2
(Ⅰ)当S1=S2时,求点P的坐标;
(Ⅱ)当S1+S2有最小值时,求点P的坐标和最小值.

查看答案和解析>>

同步练习册答案