精英家教网 > 高中数学 > 题目详情
已知直线l:y=3x+2过抛物线y=ax2(a>0)的焦点.
(1)求抛物线方程;
(2)设抛物线的一条切线l1,若l1l,求切点坐标.
(1)抛物线y=ax2(a>0)的焦点为(0,
1
4a
),-----------------3分
代入直线y=3x+2,得a=
1
8

(或用焦点坐标为(0,2)来解)抛物线方程x2=8y---------------------7分
(2)设切点坐标为(x0,y0),--------------------------------9分
由y=
1
8
x,得y′=
1
4
x,即
x0
4
=3
,-------------------------12分
得x0=12,代入抛物线方程得y0=18
切点坐标为(12,18)-----------------------15分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2c;若以F2为圆心,b-c为半径作圆F2,过椭圆上任一点P(x0,y0)作此圆的切线,切点为T,且|PT|的最小值不小于
3
2
(a-c).
(Ⅰ)证明:|PF2|的最小值为a-c;
(Ⅱ)求椭圆的离心率e的取值范围;
(Ⅲ)若椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为2的直线l与椭圆交于A、B两点,若OA⊥OB,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线y=kx+b与椭圆
x2
4
+y2
=1交于A,B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1,F2是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的焦点,P为椭圆上的点,PF1⊥OX轴,且OP和椭圆的一条长轴顶点A和短轴顶点B的连线AB平行.
(1)求椭圆的离心率e
(2)若Q是椭圆上任意一点,证明∠F1QF2
π
2

(3)过F1与OP垂直的直线交椭圆于M,N,若△MF2N的面积为20
3
,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点的双曲线C的离心率为
2
3
3
,一条准线方程为x=
3
2

(1)求双曲线C的标准方程
(2)若直线l:y=kx+
2
与双曲线C恒有两个不同的交点A和B,且
OA
OB
>2
(其中O为原点),求k的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别为A(-
2
,0)、B(
2
,0),离心率e=
2
2
.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且|PC|=(
2
-1)|PQ|.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且|MN|=
8
2
7
,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜率为1的直线l过椭圆
x2
4
+y2=1
的右焦点F2
(1)求直线l的方程;
(2)若l与椭圆交于点A、B两点,F1为椭圆左焦点,求SF1AB

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.设直线PF1、PF2的斜率分别为k1、k2
(Ⅰ)证明:
1
k1
-
3
k2
=2

(Ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP、AQ,P、Q为切点.
(1)若切线AP,AQ的斜率分别为k1和k2,求证:k1•k2为定值,并求出定值;
(2)求证:直线PQ恒过定点,并求出定点坐标;
(3)当
S△APO
PQ
最小时,求
AQ
AP
的值.

查看答案和解析>>

同步练习册答案