精英家教网 > 高中数学 > 题目详情
如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.
(I)当k1=1时,点C在y轴上,且C(0,a),则B(-
a
2
a
2
)

由点B在椭圆上,得
(-
a
2
)2
a2
+
(
a
2
)2
b2
=1
,化为
b2
a2
=
1
3

e=
c
a
=
1-
b2
a2
=
6
3

(II)设椭圆的作焦点为F1,由椭圆的定义可知:|BF1|+|BF2|=2a,又|BA|+|BF2|=2a,
∴|BF1|=|BA|,则点B在线段AF1的垂直平分线上,
xB=-
a+c
2

e=
c
a
=
1
2
,∴c=
1
2
a
b=
3
2
a

xB=-
3
4
a
,代入椭圆方程得yB
7
4
b
=±
21
8
a

k1=
yB
xB+a
=±
21
2

(III)直线BD过定点(a,0),证明如下:
设P(a,0),B(xB,yB),则
x2B
a2
+
y2B
b2
=1
(a>b>0).
则kAD•kPB=
a2
b2
k1kPB
=
a2
b2
yB
xB+a
yB
xB-a
=
a2
b2
y2B
x2B
-a2
=
a2
b2
×(-
b2
a2
)=-1

∴PB⊥AD,又PD⊥AD,
∴三点P,B,D共线,即直线BD过定点P(a,0).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

分别是双曲线的左、右焦点.若点在双曲线上,且,则                       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于A(x1,y1),B(x2,y2)两点.
(1)求x1x2与y1y2的值;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)经过点A(1,
2
2
),且离心率为
2
2
,过点B(2,0)的直线l与椭圆交于不同的两点M、N.
(Ⅰ)求椭圆的方程;
(Ⅱ)求
.
BM
.
BN
的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆mx2+ny2=1与直线y=1-x交于M、N两点,过原点与线段MN中点的直线的斜率为
2
2
,则
m
n
的值为(  )
A.
2
2
B.
2
2
3
C.
9
2
2
D.
2
3
27

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线C的渐近线为y=±
3
3
x且过点M(
6
,1).
(1)求双曲线C的方程;
(2)若直线l:y=kx+m,(m≠0)与双曲线C相交于A,B两点,D(0,-1)且有|AD|=|BD|,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的两条渐近线方程是y=x和y=-x,且过点D(
2
3
)
.l1,l2是过点P(-
2
,0)
的两条互相垂直的直线,且l1,l2与双曲线各有两个交点,分别为A1,B1和A2,B2
(1)求双曲线的方程;
(2)求l1斜率的范围
(3)若|A1B1|=
5
|A2B2|
,求l1的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦点分别为F1、F2,焦距为2c;若以F2为圆心,b-c为半径作圆F2,过椭圆上任一点P(x0,y0)作此圆的切线,切点为T,且|PT|的最小值不小于
3
2
(a-c).
(Ⅰ)证明:|PF2|的最小值为a-c;
(Ⅱ)求椭圆的离心率e的取值范围;
(Ⅲ)若椭圆的短半轴长为1,圆F2与x轴的右交点为Q,过点Q作斜率为2的直线l与椭圆交于A、B两点,若OA⊥OB,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线y=kx+b与椭圆
x2
4
+y2
=1交于A,B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

同步练习册答案