精英家教网 > 高中数学 > 题目详情
椭圆mx2+ny2=1与直线y=1-x交于M、N两点,过原点与线段MN中点的直线的斜率为
2
2
,则
m
n
的值为(  )
A.
2
2
B.
2
2
3
C.
9
2
2
D.
2
3
27
设M(x1,y1),N(x2,y2),线段MN中点P(x0,y0).
m
x21
+n
y21
=1
m
x22
+n
y22
=1
,两式相减得m(
x21
-
x22
)+n(
y21
-
y22
)=0

又x1+x2=2x0,y1+y2=2y0
y1-y2
x1-x2
=-1

∴mx0-ny0=0,
kOP=
y0
x0
=
2
2

m
n
=
y0
x0
=
2
2

故选A.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知点P为抛物线y2=2x上的动点,则点P到直线y=x+2的距离的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
3
2
),F1,F2分别为椭圆C的左右焦点,且离心率e=
1
2

(1)求椭圆C的方程.
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=-
1
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点B(6,0)和点C(-6,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率为k1,直线m的斜率为k2
(1)如果k1•k2=-
4
9
,求点A的轨迹方程,并写出此轨迹曲线的焦点坐标;
(2)如果k1•k2=
4
9
,求点A的轨迹方程,并写出此轨迹曲线的离心率;
(3)如果k1•k2=k(k≠0,k≠-1),根据(1)和(2),你能得到什么结论?(不需要证明所得结论)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆mx2+ny2=1,直线y=x+1与该椭圆相交于P和Q两点,且OP⊥OQ,|PQ|=
10
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在x轴上的椭圆的离心率为
2
2
,F1,F2为其焦点,一直线过点F1与椭圆相交于A、B两点,且△F2AB的最大面积为
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,M是抛物线y2=x上的一个定点,动弦ME、MF分别与x轴交于不同的点A、B,且|MA|=|MB|.证明:直线EF的斜率为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则双曲线的离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案