精英家教网 > 高中数学 > 题目详情
已知点P为抛物线y2=2x上的动点,则点P到直线y=x+2的距离的最小值为______.
如图,
设与直线y=x+2平行的直线方程为y=x+m.
联立
y=x+m
y2=2x
,得x2+(2m-2)x+m2=0.
由△=(2m-2)2-4m2=0,得m=
1
2

所以与直线y=x+2平行且与抛物线y2=2x相切的直线方程为y=x+
1
2

由两平行线间的距离公式得:d=
|2-
1
2
|
12+(-1)2
=
3
2
4

所以点P到直线y=x+2的距离的最小值为
3
2
4

故答案为
3
2
4

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知:双曲线的顶点坐标(0,1),(0,-l),离心率,又抛物线的焦点与双曲线一个焦点重合.
(1)求抛物线的方程;
(2)已知轴上的两点,过做直线与抛物线交于两点,试证:直线轴所成的锐角相等.
(3)在(2)的前提下,若直线的斜率为1,问的面积是否有最大值?若有,求出最大值.若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C1的焦点在x轴上,中心是坐标原点O,且与椭圆C2
x2
12
+
y2
4
=1
的离心率相同,长轴长是C2长轴长的一半.A(3,1)为C2上一点,OA交C1于P点,P关于x轴的对称点为Q点,过A作C2的两条互相垂直的动弦AB,AC,分别交C2于B,C两点,如图.

(1)求椭圆C1的标准方程;
(2)求Q点坐标;
(3)求证:B,Q,C三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点P(x,y)满足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,则
y-1
x-3
取值范围(  )
A.(-∞,
1
2
]∪[4,+∞)
B.(-∞,
1
4
]∪[2+∞)
C.[
1
2
,4]
D.[
1
4
,2]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长度为a的线段AB的两个端点A、B都在抛物线y2=2px(p>0,a>2p)上滑动,则线段AB的中点M到y轴的最短距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(文)如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于A(x1,y1),B(x2,y2)两点.
(1)求x1x2与y1y2的值;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的离心率为
6
3
,短轴一个端点到右焦点的距离为
3

(1)求椭圆C的方程;
(2)设直线l与椭圆C交于A、B两点,以AB弦为直径的圆过坐标原点O,试探讨点O到直线l的距离是否为定值?若是,求出这个定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆mx2+ny2=1与直线y=1-x交于M、N两点,过原点与线段MN中点的直线的斜率为
2
2
,则
m
n
的值为(  )
A.
2
2
B.
2
2
3
C.
9
2
2
D.
2
3
27

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

AB是过C:y2=4x焦点的弦,且|AB|=10,则AB中点的横坐标是______.

查看答案和解析>>

同步练习册答案