精英家教网 > 高中数学 > 题目详情
椭圆C1的焦点在x轴上,中心是坐标原点O,且与椭圆C2
x2
12
+
y2
4
=1
的离心率相同,长轴长是C2长轴长的一半.A(3,1)为C2上一点,OA交C1于P点,P关于x轴的对称点为Q点,过A作C2的两条互相垂直的动弦AB,AC,分别交C2于B,C两点,如图.

(1)求椭圆C1的标准方程;
(2)求Q点坐标;
(3)求证:B,Q,C三点共线.
(1)由椭圆C2
x2
12
+
y2
4
=1
可知:长轴长为4
3
,离心率是
6
3

∴椭圆C1a=
3
c=
2
,b2=a2-c2=1,
∴椭圆C1的标准方程为
x2
3
+y2=1

(2)∵A(3,1)可得直线OA:y=
1
3
x

联立
y=
1
3
x
x2+3y2=3
解得第一象限P(
3
2
1
2
)
,可得Q(
3
2
,-
1
2
)

(3)当ABx轴时,AC⊥x轴,可得B(-3,1),C(3,-1).
QC
=(
3
2
,-
1
2
)
QB
=(-
9
2
3
2
)

QB
=-3
QC
,∴B,Q,C三点共线.
当直线AC存在斜率时,可设直线AC:y-1=k(x-3),化为y=kx+1-3k,
联立
y=kx+1-3k
x2+3y2=12
,消去y得到(3k2+1)x2+6k(1-3k)x+9(3k2-2k-1)=0,
得xC=
9k2-6k-3
3k2+1
,yC=kxC+1-3k=
-3k2-6k+1
3k2+1

kCQ=
-3k2-6k+1
3k2+1
+
1
2
9k2-6k-3
3k2+1
-
3
2
=
-k2-4k+1
3k2-4k-3

同理,以-
1
k
代替上式中的k,得kBQ=
-(-
1
k
)2-4(-
1
k
)+1
3(-
1
k
)2-4(-
1
k
)-3
=
-k2-4k+1
3k2-4k-3

∴kCQ=kBQ,即Q,B,C三点共线,
综上可知:Q,B,C三点共线.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线x2-3y2=3的右焦点为F,右准线为l,以F为左焦点,以l为左准线的椭圆C的中心为A,又A点关于直线y=2x的对称点A’恰好在双曲线的左准线上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线上任意一点到焦点F的距离比到轴的距离大1,(1)求抛物线C的方程;(2)若过焦点F的直线交抛物线于M,N两点,M在第一象限,且,求直线MN的方程;(3)过点的直线交抛物线于P、Q两点,设点P关于轴的对称点为R,求证:直线RQ必过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1′.圆C2:x2+(y-4)2=1的圆心为点N.已知点P是抛物线C1′上一点(异于原点),过点P作圆C2的两条切线,交抛物线C′1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若点P到点F(
1
2
,0)的距离与它到直线x+
1
2
=0的距离相等.
(1)求P点轨迹方程C,
(2)A点是曲线C上横坐标为8且在X轴上方的点,过A点且斜率为1的直线l与C的另一个交点为B,求C与l所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P为抛物线y2=2x上的动点,则点P到直线y=x+2的距离的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆mx2+ny2=1,直线y=x+1与该椭圆相交于P和Q两点,且OP⊥OQ,|PQ|=
10
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则双曲线的离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的左、右焦点分别为,抛物线的焦点为.若,则此椭圆的离心率为(  )
A      B       C     D

查看答案和解析>>

同步练习册答案