精英家教网 > 高中数学 > 题目详情
,则双曲线的离心率的取值范围是(   )
A.B.C.D.
B
,因为是减函数,所以当
,所以,即
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

分别是双曲线的左、右焦点.若点在双曲线上,且,则                       .

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知抛物线,椭圆经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆上的点,设的坐标为是已知正实数),求之间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:双曲线的顶点坐标(0,1),(0,-l),离心率,又抛物线的焦点与双曲线一个焦点重合.
(1)求抛物线的方程;
(2)已知轴上的两点,过做直线与抛物线交于两点,试证:直线轴所成的锐角相等.
(3)在(2)的前提下,若直线的斜率为1,问的面积是否有最大值?若有,求出最大值.若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
,椭圆方程为,抛物线方程为.如图6所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

椭圆C1的焦点在x轴上,中心是坐标原点O,且与椭圆C2
x2
12
+
y2
4
=1
的离心率相同,长轴长是C2长轴长的一半.A(3,1)为C2上一点,OA交C1于P点,P关于x轴的对称点为Q点,过A作C2的两条互相垂直的动弦AB,AC,分别交C2于B,C两点,如图.

(1)求椭圆C1的标准方程;
(2)求Q点坐标;
(3)求证:B,Q,C三点共线.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点P(x,y)满足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,则
y-1
x-3
取值范围(  )
A.(-∞,
1
2
]∪[4,+∞)
B.(-∞,
1
4
]∪[2+∞)
C.[
1
2
,4]
D.[
1
4
,2]

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

椭圆mx2+ny2=1与直线y=1-x交于M、N两点,过原点与线段MN中点的直线的斜率为
2
2
,则
m
n
的值为(  )
A.
2
2
B.
2
2
3
C.
9
2
2
D.
2
3
27

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2px(p>0)与双曲线有相同焦点F,点A是两曲线交点,且AF⊥x轴,则双曲线的离心率为                                                                   ( )
A.B.C.D.

查看答案和解析>>

同步练习册答案