精英家教网 > 高中数学 > 题目详情
已知动点P(x,y)满足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,则
y-1
x-3
取值范围(  )
A.(-∞,
1
2
]∪[4,+∞)
B.(-∞,
1
4
]∪[2+∞)
C.[
1
2
,4]
D.[
1
4
,2]
由于动点P(x,y)满足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,化为
(x-2)2+(y+3)2
+
(x+3)2+(y+2)2
=
26

设A(2,-3),B(-3,-2),则|AB|=
(-3-2)2+(-2+3)2
=
26

∴动点P(x,y)在相等AB上,
设k=
y-1
x-3
,则k表示动点P(x,y)与M(3,1)连线的斜率.
又kMA=
-3-1
2-3
=4,kMB=
-2-1
-3-3
=
1
2

1
2
≤k≤4

y-1
x-3
∈[
1
2
,4]

故选C.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题


(12分)已知圆
(1)直线A、B两点,若的方程;
(2)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量,求动点Q的轨迹方程,并说明此轨迹是什么曲线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点在坐标原点O,焦点F在x轴正半轴上,倾斜角为锐角的直线l过F点,设直线l与抛物线交于A、B两点,与抛物线的准线交于M点,
MF
FB
(λ>0)
(1)若λ=1,求直线l斜率
(2)若点A、B在x轴上的射影分别为A1,B1且|
B1F
|,|
OF
|,2|
A1F
|成等差数列求λ的值
(3)设已知抛物线为C1:y2=x,将其绕顶点按逆时针方向旋转90°变成C1′.圆C2:x2+(y-4)2=1的圆心为点N.已知点P是抛物线C1′上一点(异于原点),过点P作圆C2的两条切线,交抛物线C′1于T,S,两点,若过N,P两点的直线l垂直于TS,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若点P到点F(
1
2
,0)的距离与它到直线x+
1
2
=0的距离相等.
(1)求P点轨迹方程C,
(2)A点是曲线C上横坐标为8且在X轴上方的点,过A点且斜率为1的直线l与C的另一个交点为B,求C与l所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

直线y=x+2与双曲线
x2
m
-
y2
3
=1有两个公共点,则m的
取值范围是(  )
A.m>-1且m≠3B.0<m<7且m≠3C.m>7D.m<0

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P为抛物线y2=2x上的动点,则点P到直线y=x+2的距离的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
3
2
),F1,F2分别为椭圆C的左右焦点,且离心率e=
1
2

(1)求椭圆C的方程.
(2)已知A为椭圆C的左顶点,直线l过右焦点F2与椭圆C交于M,N两点,若AM、AN的斜率k1,k2满足k1+k2=-
1
2
,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知中心在原点,焦点在x轴上的椭圆的离心率为
2
2
,F1,F2为其焦点,一直线过点F1与椭圆相交于A、B两点,且△F2AB的最大面积为
2
,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则双曲线的离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

同步练习册答案