精英家教网 > 高中数学 > 题目详情

(12分)已知圆
(1)直线A、B两点,若的方程;
(2)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量,求动点Q的轨迹方程,并说明此轨迹是什么曲线。

,轨迹是焦点坐标为两点
解:(I)①当直线l垂直于x轴时,则此时直线方程为
l与圆的两个交点坐标为
,满足题意 …………1分
②若直线l不垂直于x轴,设其方程为
 …………2分

故所求直线方程为 …………4分
综上所述,所求直线为 …………5分
(II)设点M的坐标为
则N点坐标是 …………6分

 …………11分
轨迹是焦点坐标为两点。
…………12分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)已知抛物线,椭圆经过点,它们在轴上有共同焦点,椭圆的对称轴是坐标轴.(Ⅰ)求椭圆的方程;(Ⅱ)若是椭圆上的点,设的坐标为是已知正实数),求之间的最短距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分13分)已知点是椭圆上的一点,,是椭圆的两个焦点,且满足.(Ⅰ)求椭圆的方程及离心率;(Ⅱ)设点,是椭圆上的两点,直线,的倾斜角互补,试判断直线的斜率是否为定值?并说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知分别是椭圆的左右焦点,其左准线与轴相交于点N,并且满足,设A、B是上半椭圆上满足的两点,其中.(1)求此椭圆的方程;(2)求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:双曲线的顶点坐标(0,1),(0,-l),离心率,又抛物线的焦点与双曲线一个焦点重合.
(1)求抛物线的方程;
(2)已知轴上的两点,过做直线与抛物线交于两点,试证:直线轴所成的锐角相等.
(3)在(2)的前提下,若直线的斜率为1,问的面积是否有最大值?若有,求出最大值.若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知动点P(x,y)满足,
x2+y2-4x+6y+13
+
x2+y2+6x+4y+13
=
26
,则
y-1
x-3
取值范围(  )
A.(-∞,
1
2
]∪[4,+∞)
B.(-∞,
1
4
]∪[2+∞)
C.[
1
2
,4]
D.[
1
4
,2]

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
已知A、B两点的坐标分别是(-1,0)、(1,0),直线相交于点,且它们的斜率之积为,求点的轨迹方程并判断轨迹形状。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

过双曲线的左焦点F作倾斜角为的直线与双曲线相交于A、B两点,若,则双曲线的离心率为(    )
A、              B、            C、         D、2

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线y2=2px(p>0)与双曲线有相同焦点F,点A是两曲线交点,且AF⊥x轴,则双曲线的离心率为                                                                   ( )
A.B.C.D.

查看答案和解析>>

同步练习册答案