精英家教网 > 高中数学 > 题目详情
已知:双曲线的顶点坐标(0,1),(0,-l),离心率,又抛物线的焦点与双曲线一个焦点重合.
(1)求抛物线的方程;
(2)已知轴上的两点,过做直线与抛物线交于两点,试证:直线轴所成的锐角相等.
(3)在(2)的前提下,若直线的斜率为1,问的面积是否有最大值?若有,求出最大值.若没有,说明理由.
(1) (2)略
(1)由题意,设双曲线方程为,则解得  ------2分
所以双曲线两焦点为,即,
∴抛物线的方程为;-----------------5分
(2)设直线AB方程为,代入抛物线的方程为得:
,
,,则,  -----------------7分
要证直线轴所成的锐角相等,只证明,
=,
所以原命题成立.-------------------9分
(3)由(2)知,k=1时,化为,由,
点Q到AB的距离为,---------10分
-----------11分
,则,令得:
,
和(0,上都是增函数,
是减函数,------------13分
所以无最大值.----------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线x2-3y2=3的右焦点为F,右准线为l,以F为左焦点,以l为左准线的椭圆C的中心为A,又A点关于直线y=2x的对称点A’恰好在双曲线的左准线上,求椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


(12分)已知圆
(1)直线A、B两点,若的方程;
(2)过圆C上一动点M作平行于x轴的直线m,设m与y轴的交点为N,若向量,求动点Q的轨迹方程,并说明此轨迹是什么曲线。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点为椭圆的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行。又抛物线与椭圆交于点,求抛物线与椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知双曲线的顶点都是椭圆的顶点,直线经过椭圆的一个焦点.⑴求椭圆的方程;⑵抛物线经过椭圆的两个焦点,与直线相交于,试将线段的长表示为的函数.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P为抛物线y2=2x上的动点,则点P到直线y=x+2的距离的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

,则双曲线的离心率的取值范围是(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题


在定义域(-1,1)内可导,且,点A(1,());B((-),1),
对任意∈(-1,1)恒有成立,试在内求满足不等式(sincos)+(cos2)>0的的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若椭圆的左、右焦点分别为,抛物线的焦点为.若,则此椭圆的离心率为(  )
A      B       C     D

查看答案和解析>>

同步练习册答案