精英家教网 > 高中数学 > 题目详情
已知抛物线的顶点为椭圆的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行。又抛物线与椭圆交于点,求抛物线与椭圆的方程.
因为椭圆的准线垂直于轴且它与抛物线的准线互相平行
所以抛物线的焦点在轴上,可设抛物线的方程为
在抛物线上
     抛物线的方程为
在椭圆上   ①
 ②
由①②可得
  椭圆的方程是
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

O为坐标原点, 两点分别在射线 上移动,且,动点P满足,
记点P的轨迹为C.
(I)求的值;
(II)求P点的轨迹C的方程,并说明它表示怎样的曲线?
(III)设点G(-1,0),若直线与曲线C交于M、N两点,且M、N两点都在以G为圆心的圆上,求的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

若椭圆经过点,其焦点在轴上,则该椭圆的标准方程为       

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)已知分别是椭圆的左右焦点,其左准线与轴相交于点N,并且满足,设A、B是上半椭圆上满足的两点,其中.(1)求此椭圆的方程;(2)求直线AB的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)设A(xy)、B(xy) 是椭圆(a >  b > 0) 上的两点, = (),且满足· = 0,椭圆的离心率e = ,短轴长为2,O为坐标原点.(1)求椭圆的方程;(2)若存在斜率为k的直线AB过椭圆的焦点F(0,c)(c为半焦距),求直线AB的斜率k的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知:双曲线的顶点坐标(0,1),(0,-l),离心率,又抛物线的焦点与双曲线一个焦点重合.
(1)求抛物线的方程;
(2)已知轴上的两点,过做直线与抛物线交于两点,试证:直线轴所成的锐角相等.
(3)在(2)的前提下,若直线的斜率为1,问的面积是否有最大值?若有,求出最大值.若没有,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)



F2

 
F1
 
如图,A为椭圆

O

 
x
 
的一个动点,弦AB、AC分别过焦点

B

 
F1、F2。当AC垂直于x轴时,恰好

C

 
=3∶1.

(1)求该椭圆的离心率;
(2)设,试判断是否为定值?若是,则求出该定值;若不是,请说明理由。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分14分)
,椭圆方程为,抛物线方程为.如图6所示,过点轴的平行线,与抛物线在第一象限的交点为,已知抛物线在点的切线经过椭圆的右焦点
(1)求满足条件的椭圆方程和抛物线方程;
(2)设分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点,使得为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

长度为a的线段AB的两个端点A、B都在抛物线y2=2px(p>0,a>2p)上滑动,则线段AB的中点M到y轴的最短距离为______.

查看答案和解析>>

同步练习册答案