精英家教网 > 高中数学 > 题目详情
长度为a的线段AB的两个端点A、B都在抛物线y2=2px(p>0,a>2p)上滑动,则线段AB的中点M到y轴的最短距离为______.
由题意可得抛物线的准线l:x=-
p
2

分别过A,B,M作AC⊥l,BD⊥l,MH⊥l,垂足分别为C,D,H
在直角梯形ABDC中MH=
AC+BD
2

由抛物线的定义可知AC=AF,BD=BF(F为抛物线的焦点)
MH=
AF+BF
2
AB
2
=
a
2

即AB的中点M到抛物线的准线的最小距离为
a
2

∴线段 AB的中点M到y轴的最短距离为
1
2
(a-p)

故答案为
1
2
(a-p)

练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线的顶点为椭圆的中心.椭圆的离心率是抛物线离心率的一半,且它们的准线互相平行。又抛物线与椭圆交于点,求抛物线与椭圆的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线上任意一点到焦点F的距离比到轴的距离大1,(1)求抛物线C的方程;(2)若过焦点F的直线交抛物线于M,N两点,M在第一象限,且,求直线MN的方程;(3)过点的直线交抛物线于P、Q两点,设点P关于轴的对称点为R,求证:直线RQ必过定点.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

若点P到点F(
1
2
,0)的距离与它到直线x+
1
2
=0的距离相等.
(1)求P点轨迹方程C,
(2)A点是曲线C上横坐标为8且在X轴上方的点,过A点且斜率为1的直线l与C的另一个交点为B,求C与l所围成的图形的面积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

若直线l被圆x2+y2=4所截得的弦长为2
3
,l与曲线
x2
3
+y2=1
的公共点个数为(  )
A.1个B.2个C.1个或2个D.1个或0个

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知点P为抛物线y2=2x上的动点,则点P到直线y=x+2的距离的最小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知抛物线C1:y=x2,F为抛物线的焦点,椭圆C2
x2
2
+
y2
a2
=1
(0<a<2);
(1)若M是C1与C2在第一象限的交点,且|MF|=
3
4
,求实数a的值;
(2)设直线l:y=kx+1与抛物线C1交于A,B两个不同的点,l与椭圆C2交于P,Q两个不同点,AB中点为R,PQ中点为S,若O在以RS为直径的圆上,且k2
1
2
,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知点B(6,0)和点C(-6,0),过点B的直线l与过点C的直线m相交于点A,设直线l的斜率为k1,直线m的斜率为k2
(1)如果k1•k2=-
4
9
,求点A的轨迹方程,并写出此轨迹曲线的焦点坐标;
(2)如果k1•k2=
4
9
,求点A的轨迹方程,并写出此轨迹曲线的离心率;
(3)如果k1•k2=k(k≠0,k≠-1),根据(1)和(2),你能得到什么结论?(不需要证明所得结论)

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知定点F(2,0),动圆P经过点F且与直线x=-2相切,记动圆的圆心P的轨迹为C.
(Ⅰ)求轨迹C的方程;
(Ⅱ)过点F作倾斜角为60°的直线l与轨迹C交于A(x1,y1)、B(x1,y2)两点,O为坐标原点,点M为轨迹C上一点,若向量
OM
=
OA
OB
,求λ的值.

查看答案和解析>>

同步练习册答案