精英家教网 > 高中数学 > 题目详情
已知双曲线C的渐近线为y=±
3
3
x且过点M(
6
,1).
(1)求双曲线C的方程;
(2)若直线l:y=kx+m,(m≠0)与双曲线C相交于A,B两点,D(0,-1)且有|AD|=|BD|,试求m的取值范围.
(1)由题意可知:双曲线C的焦点在x轴上,可设此双曲线C的方程为
x2
a2
-
y2
b2
=1
(a>0,b>0).
b
a
=
3
3
6
a2
-
1
b2
=1
,解得
a2=3
b2=1

∴双曲线C的方程为
x2
3
-y2=1

(2)设A(x1,y1),B(x2,y2).
联立
y=kx+m
x2-3y2=3
,化为(1-3k2)x2-6kmx-3m2-3=0,(1-3k2≠0)
由题意△>0,化为m2+1>3k2.(*)
x1+x2=
6km
1-3k2
x1x2=
-3m2-3
1-3k2

设线段AB的中点为M(x0,y0),则x0=
x1+x2
2
=
3km
1-3k2
,y0=kx0+m=
3k2m
1-3k2
+m
=
m
1-3k2

∴M(
3km
1-3k2
m
1-3k2
)
.kMD=
m+1-3k2
3km

∵|AD|=|BD|,∴kAB•kMD=-1.
k•
m+1-3k2
3km
=-1
,化为4m+1=3k2,代入(*)得m2+1>4m+1,
解得m>4或m<0.
由3k2=4m+1≥0,解得m≥-
1
4

∴m的取值范围是[-
1
4
,0)∪(4,+∞).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

点P到x轴的距离比它到点(0,1)的距离小1,称点P的轨迹为曲线C,点M为直线l:y=-m(m>0)上任意一点,过点M作曲线C的两条切线MA,MB,切点分别为A,B.
(1)求曲线C的轨迹方程;
(2)当M的坐标为(0,-l)时,求过M,A,B三点的圆的标准方程,并判断直线l与此圆的位置关系;
(3)当m变化时,试探究直线l上是否存在点M,使MA⊥MB?若存在,有几个这样的点,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,椭圆E:
x2
a2
+
y2
b2
=1(a>b>0)
的焦距为2,且过点(
2
6
2
)

(1)求椭圆E的方程;
(2)若点A,B分别是椭圆E的左、右顶点,直线l经过点B且垂直于x轴,点P是椭圆上异于A,B的任意一点,直线AP交l于点M.
(ⅰ)设直线OM的斜率为k1,直线BP的斜率为k2,求证:k1k2为定值;
(ⅱ)设过点M垂直于PB的直线为m.求证:直线m过定点,并求出定点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆G:x2+y2-2x-
2
y=0,经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B,过圆外一点(m,0)(m>a)倾斜角为
6
的直线l交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆E1方程为
x2
a2
+
y2
b2
=1(a>b>0)
,圆E2方程为x2+y2=a2,过椭圆的左顶点A作斜率为k1直线l1与椭圆E1和圆E2分别相交于B、C.
(Ⅰ)若k1=1时,B恰好为线段AC的中点,试求椭圆E1的离心率e;
(Ⅱ)若椭圆E1的离心率e=
1
2
,F2为椭圆的右焦点,当|BA|+|BF2|=2a时,求k1的值;
(Ⅲ)设D为圆E2上不同于A的一点,直线AD的斜率为k2,当
k1
k2
=
b2
a2
时,试问直线BD是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y=x2上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C与双曲线
x2
2
-
y2
6
=1
有相同焦点F1和F2,过F1的直线交椭圆于A、B两点,△ABF2的周长为8
3
.若直线y=t(t>0)与椭圆C交于不同的两点E、F,以线段EF为直径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与x轴相切,求圆M被直线x-
3
y+1=0
截得的线段长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,|
F1F2
|=2
,离心率e=
1
2
,过椭圆右焦点F2的直线l与椭圆C交于M,N两点.
(1)求椭圆C的方程;
(2)设直线l的倾斜角为
π
4
,求线段MN中点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

以椭圆
x2
16
+
y2
4
=1
内的点M(1,1)为中点的弦所在直线方程为______.

查看答案和解析>>

同步练习册答案