Èçͼ£¬ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬ÍÖÔ²E£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ½¹¾àΪ2£¬ÇÒ¹ýµã(
2
£¬
6
2
)
£®
£¨1£©ÇóÍÖÔ²EµÄ·½³Ì£»
£¨2£©ÈôµãA£¬B·Ö±ðÊÇÍÖÔ²EµÄ×ó¡¢ÓÒ¶¥µã£¬Ö±Ïßl¾­¹ýµãBÇÒ´¹Ö±ÓÚxÖᣬµãPÊÇÍÖÔ²ÉÏÒìÓÚA£¬BµÄÈÎÒâÒ»µã£¬Ö±ÏßAP½»lÓÚµãM£®
£¨¢¡£©ÉèÖ±ÏßOMµÄбÂÊΪk1£¬Ö±ÏßBPµÄбÂÊΪk2£¬ÇóÖ¤£ºk1k2Ϊ¶¨Öµ£»
£¨¢¢£©Éè¹ýµãM´¹Ö±ÓÚPBµÄÖ±ÏßΪm£®ÇóÖ¤£ºÖ±Ïßm¹ý¶¨µã£¬²¢Çó³ö¶¨µãµÄ×ø±ê£®
£¨1£©ÓÉÌâÒâµÃ2c=2£¬¡àc=1£¬ÓÖ
2
a2
+
3
2b2
=1
£¬a2=b2+1£®
ÏûÈ¥a¿ÉµÃ£¬2b4-5b2-3=0£¬½âµÃb2=3»òb2=-
1
2
£¨ÉáÈ¥£©£¬Ôòa2=4£¬
¡àÍÖÔ²EµÄ·½³ÌΪ
x2
4
+
y2
3
=1
£®
£¨2£©£¨¢¡£©ÉèP£¨x1£¬y1£©£¨y1¡Ù0£©£¬M£¨2£¬y0£©£¬Ôòk1=
y0
2
£¬k2=
y1
x1-2
£¬
¡ßA£¬P£¬MÈýµã¹²Ïߣ¬¡ày0=
4y1
x1+2
£¬¡àk1k2=
y0y1
2(x1-2)
=
4y12
2(
x21
-4)
£¬
¡ßP£¨x1£¬y1£©ÔÚÍÖÔ²ÉÏ£¬¡à
y21
=
3
4
(4-
x21
)
£¬¹Êk1k2=
4y12
2(
x21
-4)
=-
3
2
Ϊ¶¨Öµ£®
£¨¢¢£©Ö±ÏßBPµÄбÂÊΪk2=
y1
x1-2
£¬Ö±ÏßmµÄбÂÊΪkm=
2-x1
y1
£¬
ÔòÖ±ÏßmµÄ·½³ÌΪy-y0=
2-x1
y1
(x-2)
£¬y=
2-x1
y1
(x-2)+y0=
2-x1
y1
x-
2(2-x1)
y1
+
4y1
x1+2
=
2-x1
y1
x+
2(x12-4)+4
y21
(x1+2)y1
=
2-x1
y1
x+
2(x12-4)+12-3
x21
(x1+2)y1
=
2-x1
y1
x+
2-x1
y1
=
2-x1
y1
(x+1)
£¬
¼´y=
2-x1
y1
(x+1)
£®
ËùÒÔÖ±Ïßm¹ý¶¨µã£¨-1£¬0£©£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨±¾Ð¡ÌâÂú·Ö13·Ö£©ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚÔ­µãO£¬¶ÌÖ᳤Ϊ£¬Æä½¹µãF£¨c£¬0£©£¨c£¾0£©¶ÔÓ¦µÄ×¼ÏßlÓëxÖá½»ÓÚAµã£¬|OF|=2|FA|£¬¹ýAµÄÖ±ÏßÓëÍÖÔ²½»ÓÚP¡¢QÁ½µã.
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»£¨2£©Èô£¬ÇóÖ±ÏßPQµÄ·½³Ì£» £¨3£©É裬¹ýµãPÇÒƽÐÐÓÚ×¼ÏßlµÄÖ±ÏßÓëÍÖÔ²ÏཻÓÚÁíÒ»µãM. ÇóÖ¤F¡¢M¡¢QÈýµã¹²Ïß.

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªA¡¢B¡¢CÊdz¤Ö᳤Ϊ4µÄÍÖÔ²ÉϵÄÈýµã£¬µãAÊdz¤ÖáµÄÒ»¸ö¶¥µã£¬BC¹ýÍÖÔ²ÖÐÐÄO£¬Èçͼ£¬ÇÒ
AC
BC
=0
£¬|BC|=2|AC|£®
£¨1£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©Èç¹ûÍÖÔ²ÉÏÁ½µãP¡¢Qʹ¡ÏPCQµÄƽ·ÖÏß´¹Ö±AO£¬Ôò×Ü´æÔÚʵÊý¦Ë£¬Ê¹
PQ
=¦Ë
AB
£¬Çë¸ø³öÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÍÖÔ²C£º
x2
a2
+
y2
b2
=1(a£¾b£¾0)
µÄ³¤Ö᳤ÊǶÌÖ᳤µÄÁ½±¶£¬ÇÒ¹ýµãA£¨2£¬1£©£®
£¨1£©ÇóÍÖÔ²CµÄ±ê×¼·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºx-1-y=0ÓëÍÖÔ²C½»ÓÚ²»Í¬µÄÁ½µãM£¬N£¬Çó|MN|µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

£¨ÎÄ£©Èçͼ£¬OΪ×ø±êÔ­µã£¬¹ýµãP£¨2£¬0£©ÇÒбÂÊΪkµÄÖ±Ïßl½»Å×ÎïÏßy2=2xÓÚA£¨x1£¬y1£©£¬B£¨x2£¬y2£©Á½µã£®
£¨1£©Çóx1x2Óëy1y2µÄÖµ£»
£¨2£©ÇóÖ¤£ºOA¡ÍOB£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£ºÌî¿ÕÌâ

¹ýÍÖÔ²×ó½¹µãF£¬Çãб½ÇΪ
¦Ð
3
µÄÖ±Ïß½»ÍÖÔ²ÓÚA£¬BÁ½µã£¬Èô|FA|=2|FB|£¬ÔòÍÖÔ²µÄÀëÐÄÂÊΪ______£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑÖªÍÖÔ²
x2
a2
+
y2
b2
=1£¨a£¾b£¾0£©¾­¹ýµãA£¨1£¬
2
2
£©£¬ÇÒÀëÐÄÂÊΪ
2
2
£¬¹ýµãB£¨2£¬0£©µÄÖ±ÏßlÓëÍÖÔ²½»ÓÚ²»Í¬µÄÁ½µãM¡¢N£®
£¨¢ñ£©ÇóÍÖÔ²µÄ·½³Ì£»
£¨¢ò£©Çó
.
BM
.
BN
µÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑ֪˫ÇúÏßCµÄ½¥½üÏßΪy=¡À
3
3
xÇÒ¹ýµãM£¨
6
£¬1£©£®
£¨1£©ÇóË«ÇúÏßCµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=kx+m£¬£¨m¡Ù0£©ÓëË«ÇúÏßCÏཻÓÚA£¬BÁ½µã£¬D£¨0£¬-1£©ÇÒÓÐ|AD|=|BD|£¬ÊÔÇómµÄÈ¡Öµ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º²»Ïê ÌâÐÍ£º½â´ðÌâ

ÒÑ֪ƽÃæÄÚÒ»µãPÓëÁ½¸ö¶¨µãF1(-
3
£¬0)
ºÍF2(
3
£¬0)
µÄ¾àÀëµÄ²îµÄ¾ø¶ÔֵΪ2£®
£¨¢ñ£©ÇóµãPµÄ¹ì¼£·½³ÌC£»
£¨¢ò£©Éè¹ý£¨0£¬-2£©µÄÖ±ÏßlÓëÇúÏßC½»ÓÚA£¬BÁ½µã£¬ÇÒOA¡ÍOB£¨OΪ×ø±êÔ­µã£©£¬ÇóÖ±ÏßlµÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸