精英家教网 > 高中数学 > 题目详情
以椭圆
x2
16
+
y2
4
=1
内的点M(1,1)为中点的弦所在直线方程为______.
设点M(1,1)为中点的弦所在直线与椭圆相交于点A(x1,y1),B(x2,y2).
x21
16
+
y21
4
=1
x22
16
+
y22
4
=1

相减得
(x1+y1)(x1-y1)
16
+
(x2+y2)(x2-y2)
4
=0,
1=
x1+x2
2
1=
y1+y2
2
kAB=
y1-y2
x1-x2
..
2
16
+
2kAB
4
=0
,解得kAB=-
1
4

故所求的直线方程为y-1=-
1
4
(x-1)
,化为x+4y-5=0.
故答案为x+4y-5=0.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知双曲线C的渐近线为y=±
3
3
x且过点M(
6
,1).
(1)求双曲线C的方程;
(2)若直线l:y=kx+m,(m≠0)与双曲线C相交于A,B两点,D(0,-1)且有|AD|=|BD|,试求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知平面内一点P与两个定点F1(-
3
,0)
F2(
3
,0)
的距离的差的绝对值为2.
(Ⅰ)求点P的轨迹方程C;
(Ⅱ)设过(0,-2)的直线l与曲线C交于A,B两点,且OA⊥OB(O为坐标原点),求直线l的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

椭圆
x2
45
+
y2
20
=1
的焦点分别为F1和F2,过原点O作直线与椭圆相交于A,B两点.若△ABF2的面积是20,则直线AB的方程是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,直线y=kx+b与椭圆
x2
4
+y2
=1交于A,B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的离心率为
3
3
,直线l:y=x+2与圆x2+y2=b2相切.
(1)求椭圆C的方程;
(2)设直线l与椭圆C的交点为A,B,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,F1,F2是椭圆
x2
a2
+
y2
b2
=1
(a>b>0)上的焦点,P为椭圆上的点,PF1⊥OX轴,且OP和椭圆的一条长轴顶点A和短轴顶点B的连线AB平行.
(1)求椭圆的离心率e
(2)若Q是椭圆上任意一点,证明∠F1QF2
π
2

(3)过F1与OP垂直的直线交椭圆于M,N,若△MF2N的面积为20
3
,求椭圆方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设椭圆
x2
a2
+
y2
b2
=1
(a>b>0)的左、右顶点分别为A(-
2
,0)、B(
2
,0),离心率e=
2
2
.过该椭圆上任一点P作PQ⊥x轴,垂足为Q,点C在QP的延长线上,且|PC|=(
2
-1)|PQ|.
(1)求椭圆的方程;
(2)求动点C的轨迹E的方程;
(3)设直线MN过椭圆的右焦点与椭圆相交于M、N两点,且|MN|=
8
2
7
,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆C1的方程为(x-2)2+(y-1)2=
20
3
,椭圆C2的方程为
x2
a2
+
y2
b2
=1
(a>b>0),C2的离心率为
2
2
,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.

查看答案和解析>>

同步练习册答案