精英家教网 > 高中数学 > 题目详情
设点P在曲线y=x2上,从原点向A(2,4)移动,如果直线OP,曲线y=x2及直线x=2所围成的面积分别记为S1、S2
(Ⅰ)当S1=S2时,求点P的坐标;
(Ⅱ)当S1+S2有最小值时,求点P的坐标和最小值.
(Ⅰ)设点P的横坐标为t(0<t<2),则P点的坐标为(t,t2),
直线OP的方程为y=tx
S1=∫0t(tx-x2)dx=
1
6
t3
,S2=∫t2(x2-tx)dx=
8
3
-2t+
1
6
t3

因为S1=S2,,所以t=
4
3
,点P的坐标为(
4
3
16
9

S=S1+S2=
1
6
t3+
8
3
-2t+
1
6
t3
=
1
3
t3-2t+
8
3

S=t2-2,令S'=0得t2-2=0,t=
2

因为0<t<
2
时,S'<0;
2
<t<2时,S'>0
所以,当t=
2
时,Smin=
8-4
2
3
,P点的坐标为(
2
,2).
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,直线y=kx+b与椭圆
x2
4
+y2
=1交于A,B两点,记△AOB的面积为S.
(I)求在k=0,0<b<1的条件下,S的最大值;
(Ⅱ)当|AB|=2,S=1时,求直线AB的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知斜率为1的直线l过椭圆
x2
4
+y2=1
的右焦点F2
(1)求直线l的方程;
(2)若l与椭圆交于点A、B两点,F1为椭圆左焦点,求SF1AB

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)
过点(1,
2
2
)
,离心率为
2
2
,左、右焦点分别为F1、F2.点P为直线l:x+y=2上且不在x轴上的任意一点,直线PF1和PF2与椭圆的交点分别为A、B和C、D,O为坐标原点.设直线PF1、PF2的斜率分别为k1、k2
(Ⅰ)证明:
1
k1
-
3
k2
=2

(Ⅱ)问直线l上是否存在点P,使得直线OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD满足kOA+kOB+kOC+kOD=0?若存在,求出所有满足条件的点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C的中心在原点,焦点在x轴上.若椭圆上的点A(1,
3
2
)
到焦点F1、F2的距离之和等于4.
(1)写出椭圆C的方程和焦点坐标.
(2)过点Q(1,0)的直线与椭圆交于两点M、N,当△OMN的面积取得最大值时,求直线MN的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆C1的方程为(x-2)2+(y-1)2=
20
3
,椭圆C2的方程为
x2
a2
+
y2
b2
=1
(a>b>0),C2的离心率为
2
2
,如果C1与C2相交于A、B两点,且线段AB恰为圆C1的直径,求直线AB的方程和椭圆C2的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

抛物线y2=4x的一条弦被点A(4,2)平分,那么这条弦所在的直线方程式为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP、AQ,P、Q为切点.
(1)若切线AP,AQ的斜率分别为k1和k2,求证:k1•k2为定值,并求出定值;
(2)求证:直线PQ恒过定点,并求出定点坐标;
(3)当
S△APO
PQ
最小时,求
AQ
AP
的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

在平面直角坐标系xOy中,△ABC的顶点B、C的坐标为B(-2,0),C(2,0),直线AB,AC的斜率乘积为-
1
4
,设顶点A的轨迹为曲线E.
(1)求曲线E的方程;
(2)设曲线E与y轴负半轴的交点为D,过点D作两条互相垂直的直线l1,l2,这两条直线与曲线E的另一个交点分别为M,N.设l1的斜率为k(k≠0),△DMN的面积为S,试求
S
|k|
的取值范围.

查看答案和解析>>

同步练习册答案