精英家教网 > 高中数学 > 题目详情
已知椭圆
x2
a2
+
y2
b2
=1(a>b>0)的左右焦点为F1,F2,离心率为
2
2
,以线段F1F2为直径的圆的面积为π,设直线l过椭圆的右焦点F2(l不垂直坐标轴),且与椭圆交于A、B两点,
(1)求椭圆的方程;
(2)若线段AB的垂直平分线交x轴于点M(m,0),试求m的取值范围;
(3)求△ABF1面积的取值范围.
(1)由离心率为
2
2
得:
c
a
=
2
2

又由线段F1F2为直径的圆的面积为π得:πc2=π,c2=1②
由①,②解得a=
2
,c=1,∴b2=1,
∴椭圆方程为
x2
2
+y2=1

(2)由题意,F2(1,0),设l的方程为:y=k(x-1)(k≠0),代入椭圆方程
整理得(1+2k2)x2-4k2x+2k2-2=0
设A(x1,y1),B(x2,y2),AB中点为(x0,y0),则
x0=
2k2
2k2+1
,y0=k(x0-1)=-
2k
2k2+1

∴线段AB的垂直平分线方程为y-y0=-
1
k
(x-x0
令y=0,得m=x0+ky0=
k2
2k2+1
=
1
2+
1
k2

由于
1
k2
>0即2+
1
k2
>2,
∴0<m<
1
2

(3)由(2)知,x1+x2=
4k2
2k2+1
,x1x2=
2k2-2
2k2+1

∴|x1-x2|=
2
2k2+2
2k2+1

∴|y1-y2|=
2|k|
2k2+2
2k2+1

∴S△ABF1=
1
2
×2
×|y1-y2|=
2|k|
2k2+2
2k2+1

设2k2+1=t,则t>1,∴S△ABF1=
2
×
1-
1
t2

∵t>1,∴0<
1
t2
<1,∴0<S△ABF1
2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知抛物线C的顶点在坐标原点,以坐标轴为对称轴,且准线方程为x=-1.
(1)求抛物线C的标准方程;
(2)过抛物线C焦点的直线l交抛物线于A,B两点,如果要同时满足:①|AB|≤8;②直线l与椭圆3x2+2y2=2有公共点,试确定直线l倾斜角的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知圆G:x2+y2-2x-
2
y=0,经过椭圆
x2
a2
+
y2
b2
=1(a>b>0)的右焦点F及上顶点B,过圆外一点(m,0)(m>a)倾斜角为
6
的直线l交椭圆于C,D两点,
(1)求椭圆的方程;
(2)若右焦点F在以线段CD为直径的圆E的内部,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知抛物线y=x2上有一条长为2的动弦AB,则AB中点M到x轴的最短距离为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆C与双曲线
x2
2
-
y2
6
=1
有相同焦点F1和F2,过F1的直线交椭圆于A、B两点,△ABF2的周长为8
3
.若直线y=t(t>0)与椭圆C交于不同的两点E、F,以线段EF为直径作圆M.
(1)求椭圆C的标准方程;
(2)若圆M与x轴相切,求圆M被直线x-
3
y+1=0
截得的线段长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知离心率为
3
2
的椭圆C:
x2
a2
+
y2
b2
=1(a>b>o)过点M(2,1),O为坐标原点,平行于OM的直线l交椭圆于C不同的两点A,B.
(1)求椭圆的C方程.
(2)证明:若直线MA,MB的斜率分别为k1、k2,求证:k1+k2=0.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知F1,F2分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左、右焦点,|
F1F2
|=2
,离心率e=
1
2
,过椭圆右焦点F2的直线l与椭圆C交于M,N两点.
(1)求椭圆C的方程;
(2)设直线l的倾斜角为
π
4
,求线段MN中点的坐标.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设a、b是非零实数,则方程bx2+ay2=ab及ax+by=0所表示的图形可能是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设双曲线方程
x2
a2
-
y2
b2
=1(b>a>0)
的半焦距为c,直线l过(a,0),(0,b)两点,已知原点到直线l的距离为
3
4
c

(1)求双曲线的离心率;
(2)经过该双曲线的右焦点且斜率为2的直线m被双曲线截得的弦长为15,求双曲线的方程.

查看答案和解析>>

同步练习册答案