精英家教网 > 高中数学 > 题目详情

【题目】在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且 =5,则| |等于(
A.2
B.4
C.6
D.1

【答案】A
【解析】解:∵在△ABC中,∠BAC=60°,AB=5,AC=4,D是AB上一点,且 =5, 作图如下:

=k
= + =﹣ +k
= (﹣ +k )=﹣| || |cos60°+k =﹣5×4× +25k=5,
解得:k=
∴| |=5× =3,
∴| |=5﹣3=2.
故选:A.
依题意,作出图形,设 =k ,利用三角形法则可知 = + =﹣ +k ,再由 =5可求得k,从而可求得| |的值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,点B与点A(﹣1,1)关于原点O对称,P是动点,且直线AP与BP的斜率之积等于﹣
(1)求动点P的轨迹方程;
(2)设直线AP和BP分别与直线x=3交于点M,N,问:是否存在点P使得△PAB与△PMN的面积相等?若存在,求出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,经过村庄A有两条夹角60°为的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).记∠AMN=θ.
(1)将AN,AM用含θ的关系式表示出来;
(2)如何设计(即AN,AM为多长时),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知h(x)=|2x﹣1|+m|x+3|(m>0),且h(x)的最小值是7. (Ⅰ)求m的值;
(Ⅱ)求出当h(x)取得最小值时x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,直线y= x(a≠0)为曲线y=f(x)的一条切线.
(1)求实数a的值;
(2)用min{m,n}表示m,n中的最小值,设函数g(x)=min{f(x),x﹣ }(x>0),若函数h(x)=g(x)﹣bx2为增函数,求实数b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列{an}的前n(n∈N*)项和为Sn , a3=3,且λSn=anan+1 , 在等比数列{bn}中,b1=2λ,b3=a15+1. (Ⅰ)求数列{an}及{bn}的通项公式;
(Ⅱ)设数列{cn}的前n(n∈N*)项和为Tn , 且 ,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列选项中说法正确的是(
A.命题“p∨q为真”是命题“p∧q为真”的必要条件
B.向量 满足 ,则 的夹角为锐角
C.若am2≤bm2 , 则a≤b
D.“?x0∈R,x02﹣x0≤0”的否定是“?x∈R,x2﹣x≥0”

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的三个内角A,B,C的对应边分别为a,b,c,且 .则使得sin2B+sin2C=msinBsinC成立的实数m的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在极坐标系中,已知三点O(0,0),A(2, ),B(2 ).
(1)求经过O,A,B的圆C1的极坐标方程;
(2)以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,圆C2的参数方程为 (θ是参数),若圆C1与圆C2外切,求实数a的值.

查看答案和解析>>

同步练习册答案