精英家教网 > 高中数学 > 题目详情
(2012•南充三模)已知M(-2,0),N(2,0)两点,动点P在y轴上的射影为H,且使
PH
PH
PM
PN
分别是公比为2的等比数列的第三、四项.
(1)求动点P的轨迹C的方程;
(2)已知过点N的直线l交曲线C于x轴下方两个不同的点A、B,设R为AB的中点,若过点R与定点Q(0,-2)的直线交x轴于点D(x0,0),求x0的取值范围.
分析:(1)利用
PH
PH
PM
PN
分别是公比为2的等比数列的第三、四项.可求动点P的轨迹C的方程;
 (2)将直线方程与曲线方程联立,从而可表达出直线RQ的方程,进而可求x0的取值范围.
解答:解:(1)M(-2,0),N(2,0),设动点P的坐标为(x,y),所以H(0,y),
所以
PH
=(-x,0),
PM
=(-2-x,-y),
PN
=(2-x,-y)
PH
PH
=x2
,…(3分)
PM
PN
=-(4-x2)+y2
…(5分),
由条件,得y2-x2=4,又因为是等比,所以x2≠0,
所以,所求动点的轨迹方程y2-x2=4(x≠0).…(7分)
(2)设直线l的方程为y=k(x-2),A(x1,y1),B(x2,y2),
联立方程组得,
y=k(x-2)
y2-x2=4
(1-
1
k2
)y2-
4
k
y-8=0

y1+y2=
4k
k2-1
y1y2=-
8k2
k2-1

4k
k2-1
<0
-
8k2
k2-1
>0
△>0
解得:
2
2
<k<1
,…(10分)
R(
2k2
k2-1
2k
k2-1
),kRQ=
k2+k-1
k2
,…(12分)
直线RQ的方程为y+2=
k2+k-1
k2
x

x0=
2k2
k2+k-1
=
2
-(
1
k
-
1
2
)
2
+
5
4

2<x0<2+2
2
.…(15分)
点评:本题以数列为载体,考查向量知识的运用,考查轨迹的求法,考查直线与曲线的位置关系,关键是将直线与曲线联立求解.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2012•南充三模)如图,长方体ABCD-A1B1C1D1中,AB=a,AD=b,AA1=c,其外接球球心为点O,外接球体积为
32
3
π
,A、C两点的球面距离为
4
3
π
,则
1
a2
+
4
b2
的最小值为
3
4
3
4

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南充三模)已知抛物线y=
1
4
x2,则其焦点到准线的距离为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南充三模)某校要从高一、高二、高三共2012名学生中选取50名组成志愿团,若采用下面的方法选取,先用简单随机抽样的方法从2012人中剔除12人,剩下的2000人再按分层抽样的方法进行,则每人人选的概率(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南充三模)把函数y=sinx的图象按下列顺序变换:
①图象上点的横坐标伸长到原来的2倍(纵坐标不变)
②图象向右平移
π
6
个单位,得到的函数y=g(x)的解析式为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•南充三模)定义在R上的偶函数f(x)满足f(x)=f(x+2),当x∈[3,4]时,f(x)=x-2,则(  )

查看答案和解析>>

同步练习册答案