精英家教网 > 高中数学 > 题目详情

【题目】已知非空集合M满足M{0,1,2,…,n}(n≥2,n∈N+).若存在非负整数k(k≤n),使得当a∈M时,均有2k﹣a∈M,则称集合M具有性质P.设具有性质P的集合M的个数为f(n).
(1)求f(2)的值;
(2)求f(n)的表达式.

【答案】
(1)解:当n=2时,M={0},{1},{2},{0,2},{0,1,2}具有性质P,

对应的k分别为0,1,2,1,1,故f(2)=5.


(2)解:可知当n=k时,具有性质P的集合M的个数为f(t),

则当n=k+1时,f(t+1)=f(t)+g(t+1),

其中g(t+1)表达t+1∈M也具有性质P的集合M的个数,

下面计算g(t+1)关于t的表达式,

此时应有2k≥t+1,即 ,故对n=t分奇偶讨论,

①当t为偶数时,t+1为奇数,故应该有

则对每一个k,t+1和2k﹣t﹣1必然属于集合M,且t和2k﹣t,…,k和k共有t+1﹣k组数,每一组数中的两个数必然同时属于或不属于集合M,

故对每一个k,对应的具有性质P的集合M的个数为

所以

②当t为奇数时,t+1为偶数,故应该有

同理

综上,可得 又f(2)=5,

由累加法解得


【解析】(1)当n=2时,M={0},{1},{2},{0,2},{0,1,2}具有性质P,求出对应的k,即可得出.(2)可知当n=k时,具有性质P的集合M的个数为f(t),当n=k+1时,f(t+1)=f(t)+g(t+1),其中g(t+1)表达t+1∈M也具有性质P的集合M的个数,
计算g(t+1)关于t的表达式,此时应有2k≥t+1,即 ,故对n=t分奇偶讨论,利用集合M具有性质P即可得出.
【考点精析】解答此题的关键在于理解集合的表示方法-特定字母法的相关知识,掌握①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合.③描述法:{|具有的性质},其中为集合的代表元素.④图示法:用数轴或韦恩图来表示集合.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某宾馆在装修时,为了美观,欲将客房的窗户设计成半径为1m的圆形,并用四根木条将圆分成如图所示的9个区域,其中四边形ABCD为中心在圆心的矩形,现计划将矩形ABCD区域设计为可推拉的窗口.

(1)若窗口ABCD为正方形,且面积大于 m2(木条宽度忽略不计),求四根木条总长的取值范围;
(2)若四根木条总长为6m,求窗口ABCD面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.

(1)请估计学校1800名学生中,成绩属于第四组的人数;

(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;

(3)请根据频率分布直方图,求样本数据的众数、平均数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,直线的直角坐标方程为曲线的方程为现建立以为极点轴的正半轴为极轴的极坐标系

(1)写出直线极坐标方程曲线的参数方程

(2)过点平行于直线的直线与曲线交于两点,若求点轨迹的直角坐标方程

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C的极坐标方程是ρ=2sinθ,直线l的参数方程是 (t为参数).设直线l与x轴的交点是M,N是曲线C上一动点,求MN的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公园准备在一圆形水池里设置两个观景喷泉,观景喷泉的示意图如图所示,A,B两点为喷泉,圆心O为AB的中点,其中OA=OB=a米,半径OC=10米,市民可位于水池边缘任意一点C处观赏.

(1)若当∠OBC= 时,sin∠BCO= ,求此时a的值;
(2)设y=CA2+CB2 , 且CA2+CB2≤232.
(i)试将y表示为a的函数,并求出a的取值范围;
(ii)若同时要求市民在水池边缘任意一点C处观赏喷泉时,观赏角度∠ACB的最大值不小于 ,试求A,B两处喷泉间距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在直三棱柱ABC﹣A1B1C1中,已知AB⊥AC,AB=2,AC=4,AA1=3.D是线段BC的中点.

(1)求直线DB1与平面A1C1D所成角的正弦值;
(2)求二面角B1﹣A1D﹣C1的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某茶楼有四类茶饮,假设为顾客准备泡茶工具所需的时间互相独立,且都是整数分钟,经统计以往为100位顾客准备泡茶工具所需的时间(t),结果如下:

类别

铁观音

龙井

金骏眉

大红袍

顾客数(人)

20

30

40

10

时间t(分钟/人)

2

3

4

6

注:服务员在准备泡茶工具时的间隔时间忽略不计,并将频率视为概率.
(1)求服务员恰好在第6分钟开始准备第三位顾客的泡茶工具的概率;
(2)用X表示至第4分钟末已准备好了工具的顾客人数,求X的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且时,总有成立.

a的值;

判断并证明函数的单调性;

上的值域.

查看答案和解析>>

同步练习册答案