精英家教网 > 高中数学 > 题目详情

如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线

两点.

(1) 求的值;(2)求证:.

 

 

 

【答案】

(1)解:由题意知直线l的方程为,…………1分

代入抛物线方程消去y,得   ①

                                         …………2分

点A,B的横坐标是方程①的两个根,

由韦达定理得                     …………3分

, ,                         …………4分

                           …………5分

注意到,所以                  ………6分

(2)证明:设直线OA,OB的斜率分别为,则    ……8分

相乘得,所以.

【解析】略

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,O为坐标原点,点A,B,C均在⊙O上,点A(
3
5
4
5
)
,点B在第二象限,点C(1,0).
(Ⅰ)设∠COA=θ,求sin2θ的值;
(Ⅱ)若△AOB为等边三角形,求点B的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于M(x1,y1),N(x2,y2)两点.
(1)写出直线l的方程;
(2)求x1x2与y1y2的值;
(3)求证:OM⊥ON.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,O为坐标原点,直线l在x轴和y轴上的截距分别是a和b,且交抛物线y2=2px(p>0)于M(x1,y1)、N(x2,y2)两点(异于原点).
(1)证明:
1
y1
+
1
y2
=
1
b

(2)当a=2p时,求证:OM⊥ON.

查看答案和解析>>

科目:高中数学 来源: 题型:

(文)如图,O为坐标原点,过点P(2,0)且斜率为k的直线l交抛物线y2=2x于A(x1,y1),B(x2,y2)两点.
(1)求x1x2与y1y2的值;
(2)求证:OA⊥OB.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,O为坐标原点,点F为抛物线C1:x2=2py(p>0)的焦点,且抛物线C1上点P处的切线与圆C2:x2+y2=1相切于点Q.
(Ⅰ)当直线PQ的方程为x-y-
2
=0时,求抛物线C1的方程;
(Ⅱ)当正数p变化时,记S1,S2分别为△FPQ,△FOQ的面积,求
S1
S2
的最小值.

查看答案和解析>>

同步练习册答案