精英家教网 > 高中数学 > 题目详情

四棱锥S-ABCD的底面ABCD是正方形,侧棱SC的中点E在底面内的射影恰好是正方形ABCD的中心O,顶点A在截面SBD内的射影恰好是△SBD的重心G.
(1)求直线SO与底面ABCD所成角的正切值;
(2)设AB=a,求此四棱锥过点C,D,G的截面面积.
(1)∵O、E分别是AC、SC的中点
∴SAEO则SA⊥面ABCD
∴∠SOA是SO与面ABCD所成角
∴SA,AB,AD两两相互垂直,连接DG并延长交SB于F.
∵SO是△SBD的中线,∴G点在SO上
∵AD⊥面SAB,AG⊥面SDB
∴AD⊥SB,AG⊥SB
则SB⊥面FAD即DF⊥SB
同理可得SO⊥BD,BG⊥SD
∴G是△SBD的垂心∴△SBD是等边三角形
∴SA=AB=AD∴tan∠SOA=
2

(2)G 是△SBD的重心,F是SB的中点
∵CDAB∴CD面SAB而过CDG的平面交面SAB与FH
∴CD⊥面SAD则四边形CDHF是直角梯形
梯形的高DH=
a2+
1
4
a2
=
5
2
a
∴S梯形CDHF=
3
5
8
a2
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

正方体ABCD-A1B1C1D1中直线A1D与平面AB1C1D所成角为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知二面角α-l-β等于90°,A、B是棱l上两点,AC、BD分别在半平面α、β内,AC⊥l,BD⊥l,已知AB=5,AC=3,BD=4,则CD与平面α所成角的正弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=BC=2,AD=CD=
7
,PA=
3
,∠ABC=120°,G为线段PC的中点.
(1)证明:PA平面BGD;
(2)求直线DG与平面PAC所成的角的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在四棱锥P-ABCD中,ABCD为正方形,PA⊥平面ABCD,若PA=AB,则PC与面PAB所成角的余弦值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

如图,已知锐二面角α-l-β,A为α面内一点,A到β的距离为2
3
,到l的距离为4,则二面角α-l-β的大小为(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图:在直三棱柱ABC-DEF中,AB=2,AC=AD=2
3
,AB⊥AC,
(1)证明:AB⊥DC,
(2)求二面角A-DC-B的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如果正四棱锥的底面边长为2,侧面积为4
2
,则它的侧面与底面所成的(锐)二面角的大小为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(理科做)(1)证明:面APC⊥面BEF;
(2)求平面PBC与平面PCD夹角的余弦值.

查看答案和解析>>

同步练习册答案