精英家教网 > 高中数学 > 题目详情
如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为线段DD1,BD的中点.
(1)求异面直线EF与BC所成的角;
(2)求三棱锥C-B1D1F的体积.
精英家教网
(1)分别以DA,DC,DD1为x轴,y轴,z轴,建立空间直角坐标系,
∵在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为线段DD1,BD的中点,
∴E(0,0,1),F(1,1,0),B(2,2,0),C(0,2,0),
EF
=(1,1,-1),
BC
=(-2,0,0),
设异面直线EF与BC所成的角为θ,
精英家教网

则cosθ=|cos<
EF
BC
>|=|
-2
3
×2
|=
3
3

∴异面直线EF与BC所成的角为arccos
3
3

(2)∵在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为线段DD1,BD的中点,
SB1D1C=
1
2
×B1D1×B1C
=
1
2
×2
2
×2
=2
2

∵B1(2,2,2),D1(0,0,2),C(0,2,0),F(1,1,0),
D1B1
=(2,2,0)
D1C
=(0,2,-2),
D1F
=(1,1,-2)

设平面D1B1C的法向量
n
=(x,y,z),则
n
D1B1
=0
n
D1C
=0

2x+2y=0
x+y-2z=0
,解得
n
=(1,-1,0),
∴点F到平面D1B1C的距离d=
|
n
D1C
|
|
n
|
=
|0-2+0|
2
=
2

∴三棱锥C-B1D1F的体积V=
1
3
SD1B1C
=
1
3
×
2
×2
2
=
4
3
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1、DB的中点.
(Ⅰ)求证:EF∥平面ABC1D1
(Ⅱ)求证:EF⊥B1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

17、如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E,F分别为DD1,DB的中点
(1)求证:EF∥平面ABC1D1; 
(2)求二面角B1-EF-C的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在棱长为2的正方体中,E、F分别为DD1、BD的中点.  
(1)求证:EF∥面ABC1D1
(2)求证EF∥BD1
(3)求三棱锥VB1-EFC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(I)求证:EF⊥B1C;
(II)求二面角E-FC-D的正切值;
(III)求三棱锥F-EDC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•虹口区三模)如图所示,在棱长为2的正方体ABCD-A1B1C1D1中,E、F分别为DD1、DB的中点.
(Ⅰ)求证:CF⊥B1E;
(Ⅱ)求三棱锥VB1-EFC的体积.

查看答案和解析>>

同步练习册答案