精英家教网 > 高中数学 > 题目详情
已知定义在实数集R上的函数f(x)=ax3+bx2+cx+d,其中a,b,c,d是实数.
(1)若函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,并且f(0)=-7,f′(0)=-18,求函数f(x)的表达式;
(2)若a,b,c满足b2-3ac<0,求证:函数f(x)是单调函数.
分析:(1)因为函数f(x)在区间(-∞,-1)和(3,+∞)上都是增函数,在区间(-1,3)上是减函数,则导数在区间(-∞,-1)和(3,+∞)上都大于零,在区间(-1,3)上小于零,可知,-1和3对应的导数值为0,再由f′(0)=-18,可求得导函数,再利用导函数与原函数间的关系,表示出原函数,再由f(0)=-7求解.
(2)若函数f(x)是单调函数,则导函数对应的方程无根即可,所以下面就转化为导数是恒大于零还是恒小于零问题求解.
解答:解(1)f′(x)=3ax2+2bx+c.
由f'(0)=-18得c=-18,即f′(x)=3ax2+2bx-18.(3分)
又由于f(x)在区间(-∞,-1)和(3,+∞)上是增函数,在区间(-1,3)上是减函数,
所以-1和3必是f′(x)=0的两个根.
从而
3a-2b-18=0
27a+6b-18=0.
解得
a=2
b=-6.
(5分)
又根据f(0)=-7,所以f(x)=2x3-6x2-18x-7(7分)
(2)f′(x)=3ax2+2bx+c由条件b2-3ac<0可知a≠0,c≠0.(9分)
因为f'(x)为二次三项式,
并且△=(2b)2-4(3ac)=4(b2-3ac)<0,
所以,当a>0时,f'(x)>0恒成立,此时函数f(x)是单调递增函数;
当a<0时,f'(x)<0恒成立,此时函数f(x)是单调递减函数.
因此,对任意给定的实数a,函数f(x)总是单调函数.(12分)
点评:本题主要考查函数的单调性与导数正负间的关系,当导数大于零时,函数为增函数,当导数小于零时,函数为减函数.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知定义在实数集R上的偶函数f(x)在区间[0,+∞)上是单调减函数,则不等式f(1)>f(log2x)的解集为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

23、已知定义在实数集R上的函数f(x),其导函数为f'(x),满足两个条件:①对任意实数x,y都有f(x+y)=f(x)+f(y)+2xy成立;②f'(0)=2.
(1)求函数的f(x)的表达式;
(2)对任意x1,x2∈[-1,1],求证:|f(x1)-f(x2)|≤4|x1-x2|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的奇函数f(x),当x>0时,f(x)的图象是抛物线的一部分,且该抛物线经过点(1,0)、(3,0)和(0,3).
(1)求出f(x)的解析式;
(2)写出f(x)的单调区间;
(3)已知集合A={(x,y)|y=f(x)},B={(x,y)|y=t,x∈R,t∈R},若A∩B有4个元素,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的函数f(x)满足:(1)f(-x)=f(x);(2)f(4+x)=f(x);若当 x∈[0,2]时,f(x)=-x2+1,则当x∈[-6,-4]时,f(x)等于(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在实数集R上的函数f(x),同时满足以下三个条件:
①f(-1)=2;②x<0时,f(x)>1;③对任意实数x,y都有f(x+y)=f(x)f(y);
(1)求f(0),f(-4)的值; 
(2)判断函数f(x)的单调性,并求出不等式f(-4x2)f(10x)≥
116
的解集.

查看答案和解析>>

同步练习册答案