精英家教网 > 高中数学 > 题目详情
4.在由正整数构成的无穷数列{an}中,对任意的n∈N*,都有an≤an+1,且对任意的k∈N*,数列{an}中恰有k个k,则a2016=63.

分析 利用已知条件,判断出数列中的各项特点,判断出第2016项所在的组,求出第2016项.

解答 解:∵对任意的正整数k,该数列中恰有k个k,
∴数列是1;2,2,;3,3,3;4,4,4,4;…
则当n=62,
1+2+3+…+62=$\frac{62(62+1)}{2}$=1953<2016.
当n=63,
1+2+3+…+63=$\frac{63(63+1)}{2}$=2016.
∴a2016在第63组中,
故a2016=63.
故答案为:63.

点评 本题考查数列的函数特性.解答关键是利用已知条件,判断出数列具有的函数性质,利用函数性质求出特定项,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.已知点P、A、B、C共面,点O不在该平面内,Sn是等差数列{an}的前n项和,且满足$\overrightarrow{OP}$=$\frac{1}{4}$a2•$\overrightarrow{OA}$+$\frac{1}{2}$a8•$\overrightarrow{OB}$+$\frac{1}{4}$a4008•$\overrightarrow{OC}$,则S2012的值为(  )
A.2010B.2011C.2012D.2013

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.给出下列四个命题:
①某班级一共有52名学生,现将该班学生随机编号,用系统抽样的方法抽取一个容量为4的样本,已知7号、33号、46号同学在样本中,那么样本中另一位同学的编号为23;
②一组数据1,2,3,3,4,5的平均数、众数、中位数都相同;
③一组数据a,0,1,2,3,若该组数据的平均值为1,则样本的标准差为2;
④根据具有线性相关关系的两个变量的统计数据所得的回归直线方程为$\stackrel{∧}{y}$=a+bx中,b=2,$\overline{x}$=1,$\overline{y}$=3,则a=1.其中真命题为(  )
A.①②④B.②④C.②③④D.③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知圆锥的底面半径为4cm,高为2$\sqrt{5}$cm,则这个圆锥的表面积是40πcm2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在二项式${(\root{3}{x}-\frac{1}{x})^8}$的展开式中,常数项的值为28.(结果用数字表示)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知全集U=R,集合M={x|x2-4x-5<0},N={x|x≥1},则M∩(∁UN)={x|-1<x<1}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.给出下列命题:
①若{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}可以作为空间的一个基底,$\overrightarrow{d}$与$\overrightarrow{c}$共线,$\overrightarrow{d}$≠0,则{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{d}$}也可作为空间的一个基底;
②已知向量$\overrightarrow{a}$∥$\overrightarrow{b}$,则$\overrightarrow{a}$,$\overrightarrow{b}$与任何向量都不能构成空间的一个基底;
③A,B,M,N是空间四点,若$\overrightarrow{BA}$,$\overrightarrow{BM}$,$\overrightarrow{BN}$不能构成空间的一个基底,那么A,B,M,N共面;
④已知向量组{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{c}$}是空间的一个基底,若$\overrightarrow{m}$=$\overrightarrow{a}$+$\overrightarrow{c}$,则{$\overrightarrow{a}$,$\overrightarrow{b}$,$\overrightarrow{m}$}也是空间的一个基底.
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=log${\;}_{\frac{1}{2}}$[x2-2(2a-1)x+8].
(1)若f(x)的定义域为R,求a的取值范围;
(2)若f(x)的值域为R,求a的取值范围;
(3)f(x)在[-1,+∞]上有意义,求a的取值范围;
(4)f(x)在[a,+∞]上为减函数,求a的取值范围;
(5)a=$\frac{3}{4}$时,y=f[sin(2x-$\frac{π}{3}$)],x$∈[\frac{π}{12},\frac{π}{2}]$的值域.
(6)关于x的方程f(x)=-1+log${\;}_{\frac{1}{2}}$(x+3)在[1,3]上有且只有一个解,求a的取值;
(7)f(x)≤-1在x∈[2,3]上恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数$f(x)=\left\{\begin{array}{l}1-|{x-1}|({x≤2})\\-\frac{1}{4}{x^2}+2x-3(x>2)\end{array}\right.$,如在区间(1,+∞)上存在n(n≥2)个不同的数x1,x2,x3,…,xn,使得比值$\frac{{f({x_1})}}{x_1}$=$\frac{{f({x_2})}}{x_2}$=…=$\frac{{f({x_n})}}{x_n}$成立,则n的取值集合是(  )
A.{2,3,4,5}B.{2,3}C.{2,3,5}D.{2,3,4}

查看答案和解析>>

同步练习册答案