【题目】点A(0,2)是圆x2+y2=16内的定点,B,C是这个圆上的两个动点,若BA⊥CA,求BC中点M的轨迹方程,并说明它的轨迹是什么曲线.
【答案】所求轨迹为以(0,1)为圆心,以 为半径的圆
【解析】试题分析:根据垂径定理得|MB|2=|OB|2-|OM|2,再根据直角三角形斜边上中线等于斜边一半性质得|MA|=|MB|,即得|OB|2=|MO|2+|MA|2,最后设坐标代入化简即得轨迹方程,根据轨迹方程说明曲线形状
试题解析:设点M(x,y),因为M是弦BC的中点,故OM⊥BC.
又∵∠BAC=90°,∴|MA|=|BC|=|MB|.
∵|MB|2=|OB|2-|OM|2,
∴|OB|2=|MO|2+|MA|2,即42=(x2+y2)+[(x-0)2+(y-2)2],化简为x2+y2-2y-6=0,
即x2+(y-1)2=7.
∴所求轨迹为以(0,1)为圆心,以为半径的圆.
科目:高中数学 来源: 题型:
【题目】已知直线l1:y=kx﹣1与双曲线x2﹣y2=1的左支交于A,B两点.
(1)求斜率k的取值范围;
(2)若直线l2经过点P(﹣2,0)及线段AB的中点Q且l2在y轴上截距为﹣16,求直线l1的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图茎叶图记录了甲、乙两组各四名同学的植树棵树.乙组记录中有一个数据模糊,无法确认,在图中以X表示.
(注:方差 ,其中 为x1 , x2 , …xn的平均数)
(1)如果X=8,求乙组同学植树棵树的平均数和方差;
(2)如果X=9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,若A= ,b(1﹣cosC)=ccosA,b=2,则△ABC的面积为( )
A.
B.2
C.
D.或2
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】袋中有大小相同的红、黄两种颜色的球各1个,从中任取1只,有放回地抽取3次. 求:
(1)3只全是红球的概率;
(2)3只颜色全相同的概率;
(3)3只颜色不全相同的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,以Ox轴为始边作两个锐角α,β,它们的终边分别交单位圆于A,B两点.已知A,B两点的横坐标分别是 , .
(1)求tan(α+β)的值;
(2)求α+2β的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆,某抛物线的顶点为原点,焦点为圆心,经过点的直线交圆于, 两点,交此抛物线于, 两点,其中, 在第一象限, , 在第二象限.
(1)求该抛物线的方程;
(2)是否存在直线,使是与的等差中项?若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某校有高级教师20人,中级教师30人,其他教师若干人,为了了解该校教师的工资收入情况,拟按分层抽样的方法从该校所有的教师中抽取20人进行调查.已知从其他教师中共抽取了10人,则该校共有教师人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com