精英家教网 > 高中数学 > 题目详情
已知函数f(x)=x3-6x2-1.
(1)求函数f(x)的单调区间与极值;
(2)设g(x)=f(x)-c,且?x∈[-1,2],g(x)≥2c+1恒成立,求c的取值范围.
(1)∵f(x)=x3-6x2-1,
∴f′(x)=3x2-12x,
由f′(x)=3x2-12x=0,得x1=0,x2=4,
列表讨论,得:
x(-∞,0)0(0,4)4(4,+∞)
f′(x)+0-0+
f(x)极大值极小值
由表知:f(x)的增区间为(-∞,0),(4,+∞),减区间为(0,4).
当x=0时,f(x)取极大值f(0)=-1;
当x=4时,f(x)取极小值f(4)=64-6×16-1=-33.
(2)∵g(x)=f(x)-c,且?x∈[-1,2],g(x)≥2c+1恒成立
∴f(x)-c≥2c+1对?x∈[-1,2]恒成立,
∴3c+1≤f(x)在[-1,2]上恒成立.
∵由f′(x)=3x2-12x=0,得x1=0∈[-1,2],x2=4∉[-1,2],舍,
f(-1)=-1-6-1=-8,
f(0)=0-0-1=-1,
f(2)=8-24-1=-17,
∴x∈[-1,2]时,f(x)min=f(2)=-17,
∴3c+1≤-17,
∴c≤-6.
故c的取值范围是(-∞,-6].
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:填空题

已知向量
a
=(x,-1),
b
=(1,lnx),则f(x)=
a
b
的极小值为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=x2-2lnx+a(a为实常数).
(1)求f(x)的单调区间;
(2)求f(x)在区间[
1
2
,2]
上的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数f(x)=x3-3ax-a在(0,1)内有最小值,则a的取值范围是(  )
A.0≤a<1B.0<a<1C.-1<a<1D.0<a<
1
2

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

为改善行人过马路难的问题,市政府决定在如图所示的矩形区域ABCD(AB=60米,AD=104米)内修建一座过街天桥,天桥的高GM与HN均为4
3
米,∠GEM=∠HFN=
π
6
,AE,EG,HF,FC的造价均为每米1万元,GH的造价为每米2万元,设MN与AB所成的角为α(α∈[0,
π
4
]),天桥的总造价(由AE,EG,GH,HF,FC五段构成,GM与HN忽略不计)为W万元.
(1)试用α表示GH的长;
(2)求W关于α的函数关系式;
(3)求W的最小值及相应的角α.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数5(x)=x3+bx2+bx+c(实数b,b,c为常数)的图象过原点,且在x=1处的切线为直线y=-
1
2

(1)求函数5(x)的解析式;
(2)若常数口>0,求函数5(x)在区间[-口,口]上的最5值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=ax3+bx+c图象过点(0,-
1
3
)
,且在x=1处的切线方程是y=-3x-1.
(1)求y=f(x)的解析式;
(2)求y=f(x)在区间[-3,3]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知x=1是函数f(x)=x3-ax(a为参数)的一个极值点.
(1)求a的值;
(2)求x∈[0,2]时,函数f(x)的最大值与最小值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数f(x)=ax2+ln(x+1).
(1)求函数g(x)=f(x)-ax2-x的单调区间及最大值;
(2)当x∈[0,+∞)时,不等式f(x)≤x恒成立,求实数a的取值范围.
(3)求证:(1+
1
22
)(1+
1
3^
)(1+
1
42
)(1+
1
52
)…(1+
1
n2
)<e

参考导数公式:(ln(x+1))=
1
x+1

查看答案和解析>>

同步练习册答案