精英家教网 > 高中数学 > 题目详情
如图,在四棱锥中,底面是正方形,底面, 点的中点,,且交于点 .
(I)求证:平面
(II)求二面角的余弦值大小;
(III)求证:平面⊥平面.
(Ⅰ)证明见解析(II)二面角的余弦值为.(III)证明见解析
(Ⅰ)证明:连结,连结.
是正方形,∴的中点. ----------1分
的中点,∴的中位线. ∴. ----------2分
又∵平面平面,----------3分
平面.------------------4分
(II)如图,以A为坐标原点,建立空间直角坐标系
故设,则
. ----------6分
底面
是平面的法向量,.----------7分
设平面的法向量为,
,
 即 
∴           令,则. ----------9分
,
∴二面角的余弦值为.------------------10分
(III)
----------11分
  又.----------12分
. 又平面   ----------13分
∴平面⊥平面.    ------------------14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,点在棱的延长线上,


(Ⅰ) 求证://平面 ;(Ⅱ) 求证:平面平面
(Ⅲ)求四面体的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知三棱锥P—ABC中,PC⊥底面ABC,AB=BC,

D、F分别为AC、PC的中点,DE⊥AP于E.
(1)求证:AP⊥平面BDE;                
(2)求证:平面BDE⊥平面BDF;
(3)若AE∶EP=1∶2,求截面BEF分三棱锥
P—ABC所成两部分的体积比.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,平面平面ABCDABCD为正方形,是直角三角形,且E、F、G分别是线段PAPDCD的中点.
(1)求证:∥面EFC
(2)求异面直线EGBD所成的角;

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是正方形,平面上的点.

(Ⅰ)求证:
(Ⅱ)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

四棱锥的底面为正方形,底面上的点.
(1)求证:无论点上如何移动,都有
(2)若//平面,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图所示:四棱锥P-ABCD底面一直角梯形,BA⊥AD,CD⊥AD,CD=2AB,PA⊥底面ABCD,E为PC的中点.
(1)证明:EB∥平面PAD;
(2)若PA=AD,证明:BE⊥平面PDC;
(3)当PA=AD=DC时,求二面角E-BD-C的正切值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在底面是直角梯形的四棱锥中,AD∥BC,∠ABC=90°,且,又PA⊥平面ABCD,AD=3AB=3PA=3a。
(I)求二面角P—CD—A的正切值;
(II)求点A到平面PBC的距离。

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

A.2a2B.a2
C.D.

查看答案和解析>>

同步练习册答案