精英家教网 > 高中数学 > 题目详情

已知函数函数,若存在,使得成立,则实数a的取值范围是(    )

                        A.           B.           C.     D.

 

【答案】

A

【解析】的值域为的值域是,由题意得,解得,故选A

 

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)若f(x)=cosx,x∈[0,π],试写出f1(x),f2(x)的表达式;
(2)已知函数f(x)=x2,x∈[-1,4],试判断f(x)是否为[-1,4]上的“k阶收缩函数”,如果是,求出对应的k;如果不是,请说明理由;
(3)已知b>0,函数f(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=|
1
x
-3|
,x∈(0,+∞)
(1)画出y=f(x)的大致图象,并根据图象写出函数y=f(x)的单调区间;
(2)设0<a<
1
9
,b>
1
3
试比较f(a),f(b)的大小.
(3)是否存在实数a,b,使得函数y=f(x)在[a,b]上的值域也是[a,b]?若存在,求出a,b的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)的图象在[a,b]上连续不断,定义:f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]).其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值.若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.
(1)已知函数f(x)=2sinx,x∈[0,
π
2
],试写出f1(x),f2(x)的表达式,并判断f(x)是否为[0,
π
2
]上的“k阶收缩函数”,如果是,请求对应的k的值;如果不是,请说明理由;
(2)已知b>0,函数g(x)=-x3+3x2是[0,b]上的2阶收缩函数,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
2x2x-1+21-x
+a
(a∈R)
(1)若f(1)=1,求实数a的值并计算f(-1)+f(3)的值;
(2)若不等式f(x)≥0对任意的x∈[1,+∞)恒成立,求实数a的取值范围;
(3)当a=-1时,设g(x)=f(x+b),是否存在实数b使g(x)为奇函数.若存在,求出b的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2-2x-3.
(1)若函数f(x)在(1,+∞)上单调递增,在(0,1)上单调递减,求实数a的值;
(2)是否存在实数a,使得f(x)在(
1
3
1
2
)
上是单调递增函数?若存在,试求出a的范围;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案