精英家教网 > 高中数学 > 题目详情

已知二次函数f(x)=ax2+bx+c和一次函数g(x)=-bx,其中abc满足a>b>c,a+b+c=0,(a,b,c∈R).

(1)求证:两函数的图象交于不同的两点AB

(2)求线段ABx轴上的射影A1B1的长的取值范围.

(1)证明略 (2) |A1B1|∈()


解析:

消去yax2+2bx+c=0

Δ=4b2-4ac=4(-ac)2-4ac=4(a2+ac+c2)=4[(a+c2

a+b+c=0,a>b>c,∴a>0,c<0

c2>0,∴Δ>0,即两函数的图象交于不同的两点.

(2)解:设方程ax2+bx+c=0的两根为x1x2,则x1+x2=-,x1x2=.

|A1B1|2=(x1x2)2=(x1+x2)2-4x1x2

 

a>b>c,a+b+c=0,a>0,c<0

a>-ac>c,解得∈(-2,-)

的对称轴方程是.

∈(-2,-)时,为减函数

∴|A1B1|2∈(3,12),故|A1B1|∈().

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+
1
2
满足f(1+x)=f(1-x)且方程f(x)=
5
2
-x
有等根
(1)求f(x)的表达式;
(2)若f(x)在定义域(-1,t]上的值域为(-1,1],求t的取值范围;
(3)是否存在实数m、n(m<n),使f(x)定义域和值域分别为[m,n]和[2m,2n],若存在,求出m、n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+c,函数y=f(x)+
2
3
x-1
的图象过原点且关于y轴对称,记函数 h(x)=
x
f(x)

(I)求b,c的值;
(Ⅱ)当a=
1
10
时,求函数y=h(x)
的单调递减区间;
(Ⅲ)试讨论函数 y=h(x)的图象上垂直于y轴的切线的存在情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(-1,1)上的单调性;
(3)若方程g(x)=x的两实根为x1,x2f(x)=0的两根为x3,x4,求使x3<x1<x2<x4成立的a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=
-x2-x+2
的定义域为A,若对任意的x∈A,不等式x2-4x+k≥0成立,则实数k的最小值为
3
3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=ax2+bx+1和g(x)=
bx-1a2x+2b

(1)f(x)为偶函数,试判断g(x)的奇偶性;
(2)若方程g(x)=x有两个不相等的实根,当a>0时判断f(x)在(-1,1)上的单调性;
(3)当b=2a时,问是否存在x的值,使满足-1≤a≤1且a≠0的任意实数a,不等式f(x)<4恒成立?并说明理由.

查看答案和解析>>

同步练习册答案