【题目】如图,在四棱锥P﹣ABCD中,底面ABCD是直角梯形,AB∥CD,BC⊥CD,侧面PAB为等边三角形,AB=BC=2CD=2.
![]()
(Ⅰ)证明:AB⊥PD;
(Ⅱ)若PD=2,求直线PC与平面PAB所成角的正弦值.
【答案】(Ⅰ)见解析(Ⅱ)
.
【解析】
(Ⅰ)取
的中点
,连接
,可得
,再由线面垂直的判定可得
平面
,进一步得到
.
(Ⅱ)由
,
,得
,再由已知求得
,,则点C到平面
的距离等于点
到平面
的距离,证明平面
⊥平面
,过
作
,
为垂足,可得
平面
,然后求解三角形得直线
与平面
所成角的正弦值.
(Ⅰ)证明:取AB的中点E,连接DE,PE,则AB⊥DE,AB⊥PE,
又DE∩PE=E,∴AB⊥平面PDE,
则AB⊥PD;
(Ⅱ)解:∵AB∥CD,AB⊥PD,∴CD⊥PD,
又CD=1,PD=2,故PC
.
由已知可得CD∥平面PAB,
∴点C到平面PAB的距离等于点D到平面PAB的距离.
∵AB⊥平面PDE,∴平面PAB⊥平面PDE,
过D作DH⊥PE,H为垂足,
则DH⊥平面PAB,∴PE
,DE=2,
又PD=2,∴DH
.
设PC与平面PAB所成角为θ,则sinθ
.
∴直线PC与平面PAB所成角的正弦值为
.
![]()
科目:高中数学 来源: 题型:
【题目】将圆
上每一点的横坐标保持不变,纵坐标变为原来的2倍,得曲线C.
(1)写出C的参数方程;
(2)设直线
与C的交点为
,以坐标原点为极点,x轴正半轴为极坐标建立极坐标系,求过线段
的中点且与
垂直的直线的极坐标方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图(1)是某水上乐园拟开发水滑梯项目的效果图,考虑到空间和安全方面的原因,初步设计方案如下:如图(2),自直立于水面的空中平台
的上端点P处分别向水池内的三个不同方向建水滑道
,
,
,水滑道的下端点
在同一条直线上,
,
平分
,假设水滑梯的滑道可以看成线段,
均在过C且与
垂直的平面内,为了滑梯的安全性,设计要求
.
![]()
(1)求滑梯的高
的最大值;
(2)现在开发商考虑把该水滑梯项目设计成室内游玩项目,且为保证该项目的趣味性,设计
,求该滑梯装置(即图(2)中的几何体)的体积最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在2016年8月巴西里约热内卢举办的第31届奥运会上,乒乓球比赛团体决赛实行五场三胜制,且任何一方获胜三场比赛即结束.甲、乙两个代表队最终进入决赛,根据双方排定的出场顺序及以往战绩统计分析,甲队依次派出的五位选手分别战胜对手的概率如下表:
出场顺序 | 1号 | 2号 | 3号 | 4号 | 5号 |
获胜概率 |
|
|
|
|
|
若甲队横扫对手获胜(即3∶0获胜)的概率是
,比赛至少打满4场的概率为
.
(1)求
,
的值;
(2)求甲队获胜场数的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线方程为y2=-4x,直线l的方程为2x+y-4=0,在抛物线上有一动点A,点A到y轴的距离为m,到直线l的距离为n,则m+n的最小值为________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知f(x)=axex﹣lnx﹣x.
(Ⅰ)若f(x)有两个不同的零点,求实数a的取值范围;
(Ⅱ)已知a=1,若对任意的x>0,均有f(x)>cx2﹣2x+1成立,求实数c的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】下图是我国2008年至2014年生活垃圾无害化处理量(单位:亿吨)的折线图.
![]()
(Ⅰ)由折线图看出,可用线性回归模型拟合y与t的关系,请用相关系数加以说明;
(Ⅱ)建立y关于t的回归方程(系数精确到0.01),预测2016年我国生活垃圾无害化处理量.
附注:
参考数据:
,
,
,
≈2.646.
参考公式:相关系数
回归方程
中斜率和截距的最小二乘估计公式分别为:
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设定义在R上的函数
,当
时,
取极大值
,且函数
的图象关于原点对称.
(1)求
的表达式;
(2)试在函数
的图象上求两点,使以这两点为切点的切线互相垂直,且切点的横坐标都在
上;
(3)设
,
,求证:
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某商场举行有奖促销活动,顾客购买一定金额商品后即可抽奖,每次抽奖都从装有4个红球、6个白球的甲箱和装有5个红球、5个白球的乙箱中,各随机摸出1个球,在摸出的2个球中,若都是红球,则获一等奖;若只有1个红球,则获二等奖;若没有红球,则不获奖.
(1)求顾客抽奖1次能获奖的概率;
(2)若某顾客有3次抽奖机会,记该顾客在3次抽奖中获一等奖的次数为
,求
的分布列和数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com