精英家教网 > 高中数学 > 题目详情
18.已知命题p:“a>1”,命题q:“函数f(x)=ax-sinx在R上是增函数”,则命题p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

分析 利用导数法求出f(x)=ax-sinx为R上的增函数等价命题,进而根据充要条件的定义,可判断

解答 解:当f(x)=ax-sinx时,f′(x)=a-cosx,当a≥1时,f′(x)≥0在R上恒成立,f(x)=ax-sinx为R上的增函数,
由{a|a>1}?{a|a≥1},故“a>1”是“f(x)=ax-sinx为R上的增函数”的充分不必要条件,
故选:A

点评 本题考查了充要条件,函数的单调性,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E是PD的中点.
(Ⅰ)证明:PB∥平面AEC;
(Ⅱ)设AP=1,AD=$\sqrt{3}$,三棱锥P-ABD的体积V=$\frac{{\sqrt{3}}}{4}$,求A到平面PBC的距离.
(Ⅲ)在(Ⅱ)的条件下求直线AP与平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.椭圆11x2+20y2=220的焦距为(  )
A.3B.6C.2$\sqrt{31}$D.$\sqrt{31}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数f(x)=$\frac{1}{lo{g}_{3}(x-2)-1}$的定义域是(  )
A.(-∞,2)B.(2,+∞)C.(2,3)∪(3,+∞)D.(2,5)∪(5,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.运用秦九韶算法计算f(x)=0.5x6+4x5-x4+3x3-5x当x=3时的值时,最先计算的是(  )
A.-5×3=-15B.0.5×3+4=5.5
C.3×33-5×3=66D.0.5×36+4×35=1336.6

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,在圆内接四边形ABCD中,AB=1,AD=2.
(I)若BD=$\sqrt{7}$,求角C;
(II)若BC=3,CD=4,求四边形ABCD的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设f(x)=$\frac{{3}^{x}}{{3}^{x}+1}$-$\frac{1}{3}$,若[x]表示不超过x的最大整数,则函数y=[f(x)]的值域是(  )
A.{0,-1}B.{0,1}C.{-1,1}D.{-1,0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,长方体ABCD-A1B1C1D1中,AA1=AB=2,AD=1点E,F,G分别是DD1,AB,CC1的中点,则异面直线A1E与GF所成的角是(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知圆M:x2+y2+4x-2y+3=0,直线l过点P(-3,0),圆M的圆心坐标是(-2,1);若直线l与圆M相切,则切线在y轴上的截距是-3.

查看答案和解析>>

同步练习册答案