精英家教网 > 高中数学 > 题目详情
3.如图,在圆内接四边形ABCD中,AB=1,AD=2.
(I)若BD=$\sqrt{7}$,求角C;
(II)若BC=3,CD=4,求四边形ABCD的面积.

分析 (I)在△ABD中,由余弦定理可求cosA=-$\frac{1}{2}$,结合范围0<A<π,可求A,由四边形ABCD是圆的内接四边形,即可求C的值.
(II)利用余弦定理可求BD2=5-4cosA=25+24cosA,解得cosA=-$\frac{5}{7}$,结合范围0<A<π,利用同角三角函数基本关系式可求sinA,利用三角形面积公式即可计算得解.

解答 (本题满分为12分)
解:(I)在△ABD中,由余弦定理得,cosA=$\frac{A{D}^{2}+A{B}^{2}-B{D}^{2}}{2AD•AB}$=-$\frac{1}{2}$.
又0<A<π,
∴A=$\frac{2π}{3}$.
∵四边形ABCD是圆的内接四边形,
∴C=π-A=$\frac{π}{3}$.…(6分)
(II)因为BD2=AB2+AD2-2AB•AD•cosA=5-4cosA,
且BD2=CB2+CD2-2CB•CD•cos(π-A)=25+24cosA,
∴cosA=-$\frac{5}{7}$.…(9分)
又0<A<π,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{2\sqrt{6}}{7}$.
∴S△BCD=S△ABD+S△CBD=$\frac{1}{2}AB•AD•sinA$+$\frac{1}{2}CB•CD•sin(π-A)$=2$\sqrt{6}$.…(12分)

点评 本题主要考查了余弦定理,同角三角函数基本关系式,三角形面积公式的应用,考查了转化思想和数形结合思想的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.化简${(\frac{81}{16})^{\frac{3}{4}}}$-(-1)0的结果为(  )
A.$\frac{35}{8}$B.$\frac{27}{8}$C.$\frac{19}{8}$D.$\frac{11}{16}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD是等腰梯形,AD∥BC,AC⊥BD
(Ⅰ)证明:BD⊥PC
(Ⅱ)若AD=6,BC=2,直线PD与平面PAC所成的角为30°,求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数f(x)=$\frac{2}{{2}^{x}-1}$
(1)判断函数f(x)在(0,+∞)上的单调性,并证明你的结论;
(2)求函数f(x)在[1,log26]上的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知命题p:“a>1”,命题q:“函数f(x)=ax-sinx在R上是增函数”,则命题p是q的(  )
A.充分不必要条件B.必要不充分条件
C.充分必要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\sqrt{3-{3}^{x}}$+$\frac{3}{lo{g}_{3}x}$的定义域为(  )
A.{x|x<1}B.{x|0<x<1}C.{x|0<x≤1}D.{x|x>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知f(x)=$\left\{\begin{array}{l}{(5-a)x-4a,x<1}\\{{a}^{x},x≥1}\end{array}\right.$是(-∞,+∞)上的增函数,则实数a的取值范围是(1,5).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知f(x)=ax2+x-a,a∈R
(1)若a=1,解不等式f(x)≥1;
(2)若a<0,解不等式f(x)>1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,在四棱锥P-ABCD中,底面ABCD是边长为1的菱形,∠BAD=60°,侧棱PA⊥底面ABCD,E、F分别是PA、PC的中点.
(Ⅰ)证明:PA∥平面FBD;
(Ⅱ)若PA=1,在棱PC上是否存在一点M使得二面角E-BD-M的大小为60°.若存在,求出PM的长,不存在请说明理由.

查看答案和解析>>

同步练习册答案