精英家教网 > 高中数学 > 题目详情
12.设a为实数,函数f(x)=x3-x2-x+a
(1)求f(x)的极值
(2)曲线y=f(x)与x轴仅有一个交点,求a的取值范围.

分析 (1)函数连续可导,只需讨论满足f′(x)=0的点附近的导数的符号的变化情况,来确定极值点,求出极值.
(2)曲线f(x)与x轴仅有一个交点,可转化成f(x)极大值<0或f(x)极小值>0即可.

解答 解:(1)令f'(x)=3x2-2x-1=0得:x1=-$\frac{1}{3}$,x2=1.
又∵当x∈(-∞,-$\frac{1}{3}$)时,f'(x)>0;
当x∈(-$\frac{1}{3}$,1)时,f'(x)<0;
当x∈(1,+∞)时,f'(x)>0;
∴x1=-$\frac{1}{3}$与x2=1分别为f(x)的极大值与极小值点.
∴f(x)极大值=f(-$\frac{1}{3}$)=a+$\frac{5}{27}$;f(x)极小值=a-1;
(2)∵f(x)在(-∞,-$\frac{1}{3}$)上单调递增,
∴当x→-∞时,f(x)→-∞;
又f(x)在(1,+∞)单调递增,当x→+∞时,f(x)→+∞
∴当f(x)极大值<0或f(x)极小值>0时,曲线f(x)与x轴仅有一个交点.
即a+$\frac{5}{27}$<0或a-1>0,
∴a∈(-∞,-$\frac{5}{27}$)∪(1,+∞).

点评 本题主要考查了利用导数研究函数的极值,以及函数的单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.某班有学生60人,将这60名学生随机编号为1-60号,用系统抽样的方法从中抽出4名学生,已知3号、33号、48号学生在样本中,则样本中另一个学生的编号为(  )
A.28B.23C.18D.13

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴,取相同的单位长度,建立极坐标系,曲线C2的极坐标方程为ρ=2.
(1)分别写出曲线C1的普通方程与曲线C2的直角坐标方程;
(2)已知M,N分别是曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.动点P从正方体ABCD-A1B1C1D1的顶点A出发,沿着棱运动到顶点C1后再到A,若运动中恰好经过6条不同的棱,称该路线为“最佳路线”,则“最佳路线”的条数为18(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设tan(α-$\frac{π}{4}$)=$\frac{1}{4}$,则tan(α+$\frac{π}{4}$)=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知点A(1,2)和点B(2,1),若直线y=kx+1与线段AB有公共点,则k的取值范围是[0,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x|y=(x-1)0},B={y|y=x2,x∈R},则A∩B等于(  )
A.{x|-1≤x≤1}B.{x|x≥0}C.{x|x≥0且x≠1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.运行如图所示的程序框图,若输出的点恰有3次落在直线上y=x,则判断框中可填写的条件是(  )
A.i>8B.i>7C.i>6D.i>5

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,则实数a的取值集合为(  )
A.[-$\frac{1}{12}$,0]B.[-$\frac{1}{12}$,-$\frac{4}{49}$)C.(-$\frac{4}{49}$,0]D.[-$\frac{4}{49}$,0]

查看答案和解析>>

同步练习册答案