13£®ÒÑÖªÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÒÔ×ø±êÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖᣬȡÏàͬµÄµ¥Î»³¤¶È£¬½¨Á¢¼«×ø±êϵ£¬ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£®
£¨1£©·Ö±ðд³öÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÒÑÖªM£¬N·Ö±ðÊÇÇúÏßC1µÄÉÏ¡¢Ï¶¥µã£¬µãPΪÇúÏßC2ÉÏÈÎÒâÒ»µã£¬Çó|PM|+|PN|µÄ×î´óÖµ£®

·ÖÎö £¨1£©ÀûÓÃÈýÖÖ·½³ÌµÄת»¯·½·¨£¬·Ö±ðд³öÇúÏßC1µÄÆÕͨ·½³ÌÓëÇúÏßC2µÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©ÉèP£¨2cos¦Á£¬2sin¦Á£©£¬Ôò|PM|+|PN|=$\sqrt{7-4\sqrt{3}sin¦Á}$+$\sqrt{7+4\sqrt{3}sin¦Á}$£¬Á½±ßƽ·½£¬¼´¿ÉÇó|PM|+|PN|µÄ×î´óÖµ£®

½â´ð ½â£º£¨1£©ÇúÏßC1µÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}x=2cos¦È\\ y=\sqrt{3}sin¦È\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£¬ÆÕͨ·½³ÌΪ$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬
ÇúÏßC2µÄ¼«×ø±ê·½³ÌΪ¦Ñ=2£¬Ö±½Ç×ø±ê·½³ÌΪx2+y2=4£»
£¨2£©ÉèP£¨2cos¦Á£¬2sin¦Á£©£¬Ôò|PM|+|PN|=$\sqrt{7-4\sqrt{3}sin¦Á}$+$\sqrt{7+4\sqrt{3}sin¦Á}$£¬
¡à£¨|PM|+|PN|£©2=14+2$\sqrt{49-48si{n}^{2}¦Á}$£¬
¡àsin¦Á=0ʱ£¬|PM|+|PN|µÄ×î´óֵΪ2$\sqrt{7}$£®

µãÆÀ ±¾Ì⿼²éÈýÖÖ·½³ÌµÄת»¯£¬¿¼²é²ÎÊý·½³ÌµÄÔËÓ㬿¼²éѧÉúµÄ¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÔÚÊýÁÐ{an}ÖУ¬ÒÑÖªa3=3£¬an+1=an+1£¬Ç°nÏîµÄºÍSn=55ÔònΪ£¨¡¡¡¡£©
A£®8B£®9C£®10D£®11

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖª$¦Á£¬¦Â¡Ê£¨{0£¬\frac{¦Ð}{2}}£©$£¬ÇÒ$\frac{sin¦Â}{sin¦Á}=cos£¨{¦Á+¦Â}£©$£¬
£¨1£©Èô $¦Á=\frac{¦Ð}{6}$£¬Ôòtan¦Â=$\frac{\sqrt{3}}{5}$£»
£¨2£©tan¦ÂµÄ×î´óֵΪ$\frac{\sqrt{2}}{4}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®ÔÚÆ½ÃæÖ±½Ç×ø±êϵxOyÖУ¬ÒÑÖªÇúÏßC£º$\left\{\begin{array}{l}{x=\sqrt{3}cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨aΪ²ÎÊý£©£¬ÔÚÒÔÔ­µãOΪ¼«µã£¬xÖáµÄ·Ç¸º°ëÖáΪ¼«ÖὨÁ¢µÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ$\frac{{\sqrt{2}}}{2}¦Ñcos£¨¦È+\frac{¦Ð}{4}£©=-1$£®
£¨1£©ÇóÔ²CµÄÆÕͨ·½³ÌºÍÖ±ÏßlµÄÖ±½Ç×ø±ê·½³Ì£»
£¨2£©¹ýµãM£¨-1£¬0£©ÇÒÓëÖ±ÏßlƽÐеÄÖ±Ïßl1½»CÓÚA£¬BÁ½µã£¬ÇóµãMµ½A£¬BÁ½µãµÄ¾àÀëÖ®»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

8£®ÒÑ֪ȫ¼¯U={0£¬1£¬2£¬3£¬4}£¬¼¯ºÏM={1£¬2£¬3}£¬N={0£¬3£¬4}£¬Ôò£¨∁UM£©¡ÉN£¨¡¡¡¡£©
A£®{0£¬4}B£®{3£¬4}C£®{1£¬2}D£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªÖ±ÏßLµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=2+t}\\{y=2-2t}\end{array}\right.$£¨tΪ²ÎÊý£©£¬ÒÔÔ­µãOΪ¼«µã£¬ÒÔxÖáµÄÕý°ëÖáΪ¼«ÖὨÁ¢¼«×ø±êϵ£¬ÇúÏßCµÄ¼«×ø±ê·½³ÌΪ¦Ñ=$\frac{2}{\sqrt{1+3co{s}^{2}¦È}}$£®
£¨¢ñ£©Ö±½Óд³öÖ±ÏßLµÄ¼«×ø±ê·½³ÌºÍÇúÏßCµÄÆÕͨ·½³Ì£»
£¨¢ò£©¹ýÇúÏßCÉÏÈÎÒâÒ»µãP×÷ÓëL¼Ð½ÇΪ$\frac{¦Ð}{3}$µÄÖ±Ïßl£¬ÉèÖ±ÏßlÓëÖ±ÏßLµÄ½»µãΪA£¬Çó|PA|µÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$µÄ×ó¡¢ÓÒ¶¥µã·Ö±ðΪA¡¢B£¬FΪÍÖÔ²CµÄÓÒ½¹µã£¬Ô²x2+y2=4ÉÏÓÐÒ»¶¯µãP£¬P²»Í¬ÓÚA£¬BÁ½µã£¬Ö±ÏßPAÓëÍÖÔ²C½»ÓÚµãQ£¬Ôò$\frac{{k}_{PB}}{{k}_{QF}}$µÄȡֵ·¶Î§ÊÇ£¨-¡Þ£¬0£©¡È£¨0£¬1£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÉèaΪʵÊý£¬º¯Êýf£¨x£©=x3-x2-x+a
£¨1£©Çóf£¨x£©µÄ¼«Öµ
£¨2£©ÇúÏßy=f£¨x£©ÓëxÖá½öÓÐÒ»¸ö½»µã£¬ÇóaµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÒÑÖªÔ²M£º£¨x+1£©2+y2=1£¬Ô²N£º£¨x-1£©2+y2=9£¬¶¯Ô²PÓëÔ²MÍâÇв¢ÇÒÓëÔ²NÄÚÇУ¬Ô²ÐÄPµÄ¹ì¼£ÎªÇúÏßC£®
£¨1£©ÇóCµÄ·½³Ì£»
£¨2£©ÈôÖ±Ïßl£ºy=x+kÓëÇúÏßCÏàÇУ¬ÇókµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸