精英家教网 > 高中数学 > 题目详情
5.已知椭圆C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$的左、右顶点分别为A、B,F为椭圆C的右焦点,圆x2+y2=4上有一动点P,P不同于A,B两点,直线PA与椭圆C交于点Q,则$\frac{{k}_{PB}}{{k}_{QF}}$的取值范围是(-∞,0)∪(0,1).

分析 椭圆C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$焦点在x轴上,由P在圆x2+y2=4上,则PA⊥PB,则kAP•kPB=-1,可得kPB=-$\frac{1}{{k}_{AP}}$,$\frac{{k}_{PB}}{{k}_{QF}}$=$\frac{-\frac{1}{{k}_{AP}}}{{k}_{QF}}$=-$\frac{1}{{k}_{AP}•{k}_{QF}}$,设Q(2cosθ,$\sqrt{3}$sinθ),则kAP•kQF=$\frac{\sqrt{3}sinθ}{2cosθ+2}$•$\frac{\sqrt{3}sinθ}{2cosθ-1}$=$\frac{3(1-co{s}^{2}θ)}{4co{s}^{2}θ+2cosθ-2}$,设t=cosθ,t∈(-1,1),则f(t)=$\frac{3(1-{t}^{2})}{4{t}^{2}+2t-2}$,进而得出.

解答 解:椭圆C:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1$焦点在x轴上,a=2,b=$\sqrt{3}$,c=1,右焦点F(1,0),
由P在圆x2+y2=4上,则PA⊥PB,
则kAP•kPB=-1,则kPB=-$\frac{1}{{k}_{AP}}$,
$\frac{{k}_{PB}}{{k}_{QF}}$=$\frac{-\frac{1}{{k}_{AP}}}{{k}_{QF}}$=-$\frac{1}{{k}_{AP}•{k}_{QF}}$,
设Q(2cosθ,$\sqrt{3}$sinθ),则kAP•kQF=$\frac{\sqrt{3}sinθ}{2cosθ+2}$•$\frac{\sqrt{3}sinθ}{2cosθ-1}$,
=$\frac{3si{n}^{2}θ}{4co{s}^{2}θ+2cosθ-2}$,
=$\frac{3(1-co{s}^{2}θ)}{4co{s}^{2}θ+2cosθ-2}$,
设t=cosθ,t∈(-1,1),
则f(t)=$\frac{3(1-{t}^{2})}{4{t}^{2}+2t-2}$,
∴$\frac{{k}_{PB}}{{k}_{QF}}$=$\frac{4{t}^{2}+2t-2}{3({t}^{2}-1)}$=$\frac{4}{3}$+$\frac{2}{3}$$•\frac{1}{t-1}$∈(-∞,1),且不等于0.
故答案为:(-∞,0)∪(0,1).

点评 本题考查了椭圆的标准方程及其性质、相互垂直的直线斜率之间的关系、三角函数求值、函数的性质、换元方法,考查了推理能力与计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设数列{an}中,a1=3,$\frac{1}{3}{a_n}={a_{n-1}}+{3^n}$(n∈N*,n≥2),则an=(3n-2)•3n

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.若随机变量X~N(u,σ2)(σ>0),则有如下结论(  )
P(u-σ<X≤u+σ)=0.6826,
P(u-2σ<X≤u+2σ)=0.9544
P(u-3σ<X≤u+3σ)=0.9974,
一班有60名同学,一次数学考试的成绩服从正态分布,平均分110,方差为100,理论上说在120分到130分之间的人数约为(  )
A.6B.7C.8D.9

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴,取相同的单位长度,建立极坐标系,曲线C2的极坐标方程为ρ=2.
(1)分别写出曲线C1的普通方程与曲线C2的直角坐标方程;
(2)已知M,N分别是曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.把函数y=$\frac{1}{2}$sin2x的图象经过________变化,可以得到函数y=$\frac{1}{4}$sinx的图象.(  )
A.横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标伸长为原来的2倍
B.横坐标伸长为原来的2倍,纵坐标伸长为原来的2倍
C.横坐标缩短为原来的$\frac{1}{2}$倍,纵坐标缩短为原来的$\frac{1}{2}$倍
D.横坐标伸长为原来的2倍,纵坐标缩短为原来的$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.动点P从正方体ABCD-A1B1C1D1的顶点A出发,沿着棱运动到顶点C1后再到A,若运动中恰好经过6条不同的棱,称该路线为“最佳路线”,则“最佳路线”的条数为18(用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.设tan(α-$\frac{π}{4}$)=$\frac{1}{4}$,则tan(α+$\frac{π}{4}$)=(  )
A.-2B.2C.-4D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x|y=(x-1)0},B={y|y=x2,x∈R},则A∩B等于(  )
A.{x|-1≤x≤1}B.{x|x≥0}C.{x|x≥0且x≠1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.
(1)当a=$\frac{1}{2}$时,求(∁UB)∩A.
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

同步练习册答案