精英家教网 > 高中数学 > 题目详情
13.已知圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,动圆P与圆M外切并且与圆N内切,圆心P的轨迹为曲线C.
(1)求C的方程;
(2)若直线l:y=x+k与曲线C相切,求k的值.

分析 (1)根据PM+PN=4,即P到M和P到N的距离之和为定值,得到P是以M、N为焦点的椭圆,求出椭圆方程即可;
(2)联立直线l和曲线C得到方程组,根据△=0,得到关于k的方程,解出即可.

解答 解:(1)圆M:(x+1)2+y2=1,圆N:(x-1)2+y2=9,
设动圆P半径为R.
∵M在N内,∴动圆只能在N内与N内切,不能是N在动圆内,即:R<3
动圆P与圆M外切,则PM=1+R,
动圆P与圆N内切,则PN=3-R,
∴PM+PN=4,即P到M和P到N的距离之和为定值.
∴P是以M、N为焦点的椭圆.
∵MN的中点为原点,故椭圆中心在原点,
∴2a=4,a=2,2c=MN=2,c=1,
∴b2=a2-c2=4-1=3,
∴C的方程为 $\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1(x≠-2);
(2)由$\left\{\begin{array}{l}{\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}=1}\\{y=x+k}\end{array}\right.$,得:7x2+8kx+4k2-12=0,
若直线l和曲线C相切,
则△=64k2-28(4k2-12)=0,
解得:k=±$\sqrt{7}$.

点评 本题考查了求椭圆方程问题,考查直线和曲线的位置关系,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知曲线C1的参数方程为$\left\{\begin{array}{l}x=2cosθ\\ y=\sqrt{3}sinθ\end{array}\right.$(θ为参数),以坐标原点O为极点,x轴的非负半轴为极轴,取相同的单位长度,建立极坐标系,曲线C2的极坐标方程为ρ=2.
(1)分别写出曲线C1的普通方程与曲线C2的直角坐标方程;
(2)已知M,N分别是曲线C1的上、下顶点,点P为曲线C2上任意一点,求|PM|+|PN|的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若集合A={x|y=(x-1)0},B={y|y=x2,x∈R},则A∩B等于(  )
A.{x|-1≤x≤1}B.{x|x≥0}C.{x|x≥0且x≠1}D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.运行如图所示的程序框图,若输出的点恰有3次落在直线上y=x,则判断框中可填写的条件是(  )
A.i>8B.i>7C.i>6D.i>5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在(0,+∞)的函数f(x)=|4x(1-x)|,若关于x的方程f2(x)+(t-3)f(x)+t-2=0有且只有3个不同的实数根,则实数t的取值集合是{2,$5-2\sqrt{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知集合M={x∈Z|x<3},N={x|1≤ex≤e},则M∩N等于(  )
A.B.{0}C.[0,1]D.{0,1}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.
(1)当a=$\frac{1}{2}$时,求(∁UB)∩A.
(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知集合A={x|ax2+x-3=0},B={x|3≤x<7},若A∩B≠∅,则实数a的取值集合为(  )
A.[-$\frac{1}{12}$,0]B.[-$\frac{1}{12}$,-$\frac{4}{49}$)C.(-$\frac{4}{49}$,0]D.[-$\frac{4}{49}$,0]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知P1(2,-1),P2(0,5)且点P在P1P2的延长线上,$|{\overrightarrow{{P_1}P}}|=2|{\overrightarrow{P{P_2}}}|$,则点P的坐标为(-2,11).

查看答案和解析>>

同步练习册答案