【题目】过椭圆
上一点M作圆
的两条切线,切点为A、B,过A、B的直线与
轴和
轴分别交于
,则
面积的最小值为( )
A.
B. 1 C.
D. ![]()
科目:高中数学 来源: 题型:
【题目】如图,AB是圆O的直径,C为圆周上一点,过C作圆O的切线l,过A作直线l的垂线AD,D为垂足,AD与圆O交于点E. ![]()
(1)求证:ABDE=BCCE;
(2)若AB=8,BC=4,求线段AE的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】端午节吃粽子是我国的传统习俗,设一盘中装有
个粽子,其中豆沙粽
个,肉粽
个,白粽
个,这三种粽子的外观完全相同,从中任意选取
个.
(
)求三种粽子各取到
个的概率.
(
)设
表示取到的豆沙粽个数,求
的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
的左,右焦点分别为F1, F2,直线l1过点F1且垂直于椭圆的长轴,动直线l2垂直l1于点P,线段PF2的垂直平分线交l2于点M.
(1)求点M的轨迹
的方程;
(2)设
与x轴交于点Q,
上不同于点Q的两点R、S,且满足
,求
的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知
,函数
.
(1)当
时,画出函数
的大致图像;
(2)当
时,根据图像写出函数
的单调减区间,并用定义证明你的结论;
(3)试讨论关于x的方程
解的个数.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图是两个独立的转盘(A)、(B),在两个图中三个扇形区域的圆心角分别为60°、120°、180°.用这两个转盘进行游戏,规则是:同时转动两个转盘待指针停下(当两个转盘中任意一个指针恰好落在分界线时,则这次转动无效,重新开始),记转盘(A)指针所对的区域为x,转盘(B)指针所对的区域为y,x、y∈{1,2,3},设x+y的值为ξ. ![]()
(1)求x<2且y>1的概率;
(2)求随机变量ξ的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,以O为原点,以x轴正半轴建立极坐标系,曲线C的极坐标方程为ρ2﹣4ρsinθ+3=0,直线l的参数方程为
,(t为参数).
(1)写出曲线C和直线l的直角坐标方程;
(2)若点A,B是曲线C上的两动点,点P是直线l上一动点,求∠APB的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com