精英家教网 > 高中数学 > 题目详情

【题目】如图,已知四棱锥中, 平面 ,且 的中点.

1)求异面直线所成角的大小;

2)求点D到平面的距离.

【答案】(1) 异面直线所成角为;(2)1.

【解析】试题分析:(1)因为平面,取的中点,则 两两垂直,以点为原点以为轴,建立空间直角坐标系,分别求出异面直线的方向向量,利用空间向量夹角余弦公式求解即可;(2)先求得,又∵平面 是平面的一个法向量,所以点 到平面的距离.

试题解析:(1)如图所示,以点为原点建立空间直角坐标系

,故

,即

故异面直线所成角为

(2)在平面中,∵ ,∴

,∴,由

,又∵,∴,又∵平面

是平面的一个法向量,所以点D到平面的距离

【方法点晴】本题主要考查利用空间向量求线面角,以及利用向量求点面距离,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fx)=2x-P2-x,则下列结论正确的是(  )

A. 为奇函数且为R上的减函数

B. 为偶函数且为R上的减函数

C. 为奇函数且为R上的增函数

D. 为偶函数且为R上的增函数

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知fx)是定义在[-1,1]上的奇函数,且f(1)=1,若任意的ab∈[-1,1],当a+b≠0时,总有

(1)判断函数fx)在[-1,1]上的单调性,并证明你的结论;

(2)解不等式:

(3)若fx)≤m2-2pm+1对所有的x∈[-1,1]恒成立,其中p∈[-1,1](p是常数),试用常数p表示实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)求的值;

(2)若函数在区间是单调递增函数,求实数的取值范围;

(3)若关于的方程在区间内有两个实数根,求实数的取值范围 .

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过椭圆上一点M作圆的两条切线,切点为AB,过AB的直线与轴和轴分别交于,则面积的最小值为( )

A. B. 1 C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】心理学家通过研究学生的学习行为发现;学生的接受能力与老师引入概念和描述问题所用的时间相关,教学开始时,学生的兴趣激增,学生的兴趣保持一段较理想的状态,随后学生的注意力开始分散,分析结果和实验表明,用表示学生掌握和接受概念的能力, x表示讲授概念的时间(单位:min),可有以下的关系:

(1)开讲后第5min与开讲后第20min比较,学生的接受能力何时更强一些?

(2)开讲后多少min学生的接受能力最强?能维持多少时间?

(3)若一个新数学概念需要55以上(包括55)的接受能力以及13min时间,那么老师能否在学生一直达到所需接受能力的状态下讲授完这个概念?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在△ABC中,角A,B,C所对的边分别为a,b,c,满足c=1,且cosBsinC+(a﹣sinB)cos(A+B)=0
(1)求C的大小;
(2)求a2+b2的最大值,并求取得最大值时角A,B的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图在四棱锥PABCD底面ABCD是正方形侧面PAD⊥底面ABCDPAPDADEF分别为PCBD的中点.

求证:(1)EF∥平面PAD

(2)PA⊥平面PDC.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥P﹣ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD的中点.

(1)证明:PB∥平面AEC;
(2)设二面角D﹣AE﹣C为60°,AP=1,AD= ,求三棱锥E﹣ACD的体积.

查看答案和解析>>

同步练习册答案