精英家教网 > 高中数学 > 题目详情

【题目】已知函数),数列的前项和为,点图象上,且的最小值为.

(1)求数列的通项公式;

(2)数列满足,记数列的前项和为,求证: .

【答案】(1).(2)见解析.

【解析】试题分析:1根据二次函数的最值可求得 的值,从而可得,进而可得结果;2由(1)知 裂项相消法求和,放缩法即可证明.

试题解析:(1)

的最小值为.

,所以,即.

所以当时,

时, 也适合上式,

所以数列的通项公式为.

(2)证明:由(1)知

所以

所以.

【方法点晴】裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,掌握一些常见的裂项技巧:①;②

;③

;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】下列命题中,正确的命题有__________

①回归直线恒过样本点的中心,且至少过一个样本点;

②将一组数据的每个数据都加一个相同的常数后,方差不变;

③用相关指数来刻画回归效果, 越接近,说明模型的拟合效果越好;

④用系统抽样法从名学生中抽取容量为的样本,将名学生从编号,按编号顺序平均分成组(号, 号, 号),若第组抽出的号码为,则第一组中用抽签法确定的号码为号.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数为自然对数的底数)

(Ⅰ)试讨论函数的零点个数;

(Ⅱ)证明:当时,总有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 为自然对数的底数).

(1)试讨论函数的极值情况;

(2)证明:当时,总有.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校高二八班选出甲、乙、丙三名同学参加级部组织的科学知识竞赛.在该次竞赛中只设成绩优秀和成绩良好两个等次,若某同学成绩优秀,则给予班级10分的班级积分,若成绩良好,则给予班级5分的班级积分.假设甲、乙、丙成绩为优秀的概率分别为 ,他们的竞赛成绩相互独立.
(1)求在该次竞赛中甲、乙、丙三名同学中至少有一名成绩为优秀的概率;
(2)记在该次竞赛中甲、乙、丙三名同学所得的班级积分之和为随机变量ξ,求随机变量ξ的分布列和数学期望Eξ.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数y=x+ 有如下性质:如果常数t>0,那么该函数在 上是减函数,在 上是增函数.
(1)已知f(x)= ,x∈[﹣1,1],利用上述性质,求函数f(x)的单调区间和值域;
(2)对于(1)中的函数f(x)和函数g(x)=﹣x﹣2a,若对任意x1∈[﹣1,1],总存在x2∈[0,1],使得g(x2)=f(x1)成立,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,点在以为直径的圆上, 垂直与圆所在平面, 的垂心.

(1)求证:平面平面

(2)若,点在线段上,且,求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=m2x+x2+nx,若{x|f(x)=0}={x|f(f(x))=0}≠,则m+n的取值范围为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=a3x+1 , g(x)=( 5x2 , 其中a>0,且a≠1.
(1)若0<a<1,求满足f(x)<1的x的取值范围;
(2)求关于x的不等式f(x)≥g(x)的解集.

查看答案和解析>>

同步练习册答案