精英家教网 > 高中数学 > 题目详情
17.不等式3x+2y-6≤0表示的区域是(  )
A.B.C.D.

分析 作出3x+2y-6=0,找点判断可得.

解答 解:可判原点适合不等式3x+2y-6≤0,
故不等式3x+2y-6≤0所表示的平面区域为直线3x+2y-6=0的左下方,
故选:D.

点评 本题考查不等式表示平面区域,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=x2+$\frac{a}{x}$(x≠0,a∈R)在(0,2)上为减函数,则实数a的取值范围是(  )
A.(0,16]B.(-∞,16)C.(16,+∞)D.[16,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.袋中装有大小和形状相同的2个红球和2个黄球,随机摸出两个球,则两球颜色相同的概率是$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=2x3-3(k+1)x2+6kx+t,其中k,t为实数.
(1)若函数f(x)在x=2处有极小值0,求k,t的值;
(2)已知k≥1且t=1-3k,如果存在x0∈(1,2],使得f'(x0)≤f(x0)成立,求实数t的取值范围;
(3)记函数H(x)=[f(x)-t-2]•[$\frac{1}{6}$f'(x)-($\frac{1}{2}$k-1)x-k],若函数y=H(x)有5个不同的零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数 f (x)是定义在R上的周期为2的函数,当x∈[-1,1)时,f(x)=$\left\{\begin{array}{l}{-4{x}^{2}+1,-1≤x<0}\\{x+\frac{7}{4},0≤x<1}\end{array}\right.$,则f[f($\frac{3}{2}$)]=$\frac{7}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.如图,在正方体ABCD-A′B′C′D′中,M、N分别是BB′,CD的中点,则异面直线AM与D′N所成的角是(  )
A.30°B.45°C.60°D.90°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=ln$\frac{ex}{2}$-f′(1)x.
(1)求f′(2);
(2)求f(x)的单调区间和极值;
(3)设a≥1,函数g(x)=x2-3ax+2a2-5,若对于任意x0∈(0,1),总存在x1∈(0,2)使得f(x1)=g(x0)成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知复数z=(m2-1)+(m+1)i,其中m∈R
(1)若z为纯虚数,求复数z;
(2)若z为实数,求复数z.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知f(x)=a+$\frac{a}{x^2}-\frac{5}{x}$,对?x∈(0,+∞),有f(x)≥0,则实数a的取值范围是(  )
A.$[{\frac{5}{2},+∞})$B.$({\frac{5}{2},+∞})$C.$[{\frac{3}{2},+∞})$D.$({\frac{3}{2},+∞})$

查看答案和解析>>

同步练习册答案