精英家教网 > 高中数学 > 题目详情
9.已知函数f(x)=ln$\frac{ex}{2}$-f′(1)x.
(1)求f′(2);
(2)求f(x)的单调区间和极值;
(3)设a≥1,函数g(x)=x2-3ax+2a2-5,若对于任意x0∈(0,1),总存在x1∈(0,2)使得f(x1)=g(x0)成立,求a的取值范围.

分析 (1)对f(x)进行求导,得到导数f′(x),再令x=1代入f′(x),求得f′(1),即可求f′(2);
(2)对f(x)进行求导,求出极值点,利用导数求得函数的单调区间;
(3)函数g(x)=x2-3ax+2a2-5,若对于任意x0∈(0,1),总存在x1∈(0,2),使得f(x1)=g(x0)成立,将其转化为g(x)的最值问题,只要g(x)的最大值小于等于0即可满足.

解答 解:(I)∵f(x)=ln$\frac{ex}{2}$-f′(1)x,
∴f′(x)=$\frac{1}{x}$-f′(1),
令x=1,可得f′(1)=1-f′(1),解得f′(1)=$\frac{1}{2}$,
∴f′(2)=$\frac{1}{2}$-f′(1)=0.…(4分)
(2)由f′(x)=$\frac{1}{x}$-$\frac{1}{2}$=0,得x=2,
∵x>0,∴当0<x<2时,f′(x)>0,当x>2时,f′(x)<0,
故f(x)的单调递增区间为(0,2),单调递减区间为(2,+∞);
极大值为f(2)=0.…(8分)
(3)∵f(2)=0,
由(2)可知f(x)在(0,2)上的值域为:(-∞,0)
要使对任意x0∈(0,1),总存在x1∈(0,2),使得f(x1)=g(x0)成立,
可得函数g(x)的最大值小于等于0即可,
∵g(x)=x2-3ax+2a2-5,x∈(0,1),a≥1,
函数的对称为x=$\frac{3a}{2}$≥$\frac{3}{2}$,开口向上,
g(x)在(0,1)上为减函数,g(x)<g(0),
所g(x)的最大值为g(0)=2a2-5,
∴g(0)=2a2-5≤0,a≥1,
∴1≤a≤$\frac{\sqrt{10}}{2}$.…(14分)

点评 本小题主要考查利用导数研究函数的单调性、函数恒成立问题、利用导数求闭区间上函数的最值、不等式的解法等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x2-alnx-x(a≠0)
(1)若f(x)在x=$\frac{3}{4}$处取得极值,求实数a的值;
(2)若a>0,设A(x1,y1),B(x2,y2)(x1<x2)是函数f(x)图象上的任意两点,记直线AB的斜率为k,求证:f′($\frac{{x}_{1}+{x}_{2}}{2}$)>k.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.0,1,2,3,4组成没有重复数字的五位数,其中0,1不能相邻的不同排法数为(  )
A.36B.24C.54D.27

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.不等式3x+2y-6≤0表示的区域是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知α∈($\frac{π}{4}$,$\frac{π}{2}$),sinα+cosα=$\frac{7}{5}$,求$\frac{sin(\frac{3π}{2}+α)tan(α-5π)cos(\frac{π}{6}-α)}{sin(\frac{π}{3}+α)}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)=x3lnx+m有2个零点,则m的取值范围是(  )
A.(-∞,$\frac{1}{{e}^{3}}$)B.($\frac{1}{{e}^{3}}$,+∞)C.(-∞,$\frac{1}{3e}$)D.($\frac{1}{3e}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.函数f(x)=$\frac{1}{3}$x3+|x-a|(x∈R,a∈R).
(1)若函数f(x)在R上为增函数,求a的取值范围;
(2)已知函数f(x)在R上不单调.
①记f(x)在x∈[-1,1]上的最大值、最小值分别为M(a),m(a),求M(a)-m(a);
②设b∈R,若|f(x)+b|≤$\frac{2}{3}$对任意实数x∈[-1,1]都成立,求a-b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数f(x)=Asin(ωx+φ)(A,ω,φ为常数,A>0,ω>0,0<φ<π)的图象如图所示,则A=2,f(-$\frac{π}{3}$)=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设a∈R,a2-1+(a+1)i是纯虚数,其中i是虚数单位,则a=(  )
A.±1B.-1C.1D.0

查看答案和解析>>

同步练习册答案