精英家教网 > 高中数学 > 题目详情
已知函数f(x)(x∈R,x≠
1
a
)
满足ax•f(x)=2bx+f(x),a≠0,f(1)=1;且使f(x)=2x成立的实数x只有一个.
(Ⅰ)求函数f(x)的表达式;
(Ⅱ)若数列{an}满足a1=
2
3
,an+1=f(an),bn=
an
1-an
,n∈N*,证明数列{bn}是等比数列,并求出{bn}的通项公式.
分析:(Ⅰ)先将函数化为f(x)=
2bx
ax-1
,利用f(1)=1,得a=2b+1.根据f(x)=2x只有一解,可得2ax2-2(1+b)x=0(a≠0)只有一解,从而可求b,a的值;
(Ⅱ)解法一:先猜想,an=
2n
2n+1
(n∈N*)
.再用数学归纳法证明,关键是假设n=k时,命题成立,即ak=
2k
2k+1
;证明 n=k+1时,ak+1=f(ak)=
2ak
ak+1
=
2k
2k+1
2k
2k+1
+1
=
2k+1
2k+1+1
,从而得证,进而可求{bn}的通项公式;
解法二:根据a1=
2
3
an+1=f(an)=
2an
an+1
,可得
1
an+1
=
1
2
(
1
an
+1)
,利用bn=
an
1-an
,可得结论.
解答:解:(Ⅰ)由ax•f(x)=2bx+f(x),x≠
1
a
,a≠0,得f(x)=
2bx
ax-1
.…(2分)
由f(1)=1,得a=2b+1.…(3分)
由f(x)=2x只有一解,即
2bx
ax-1
=2x
,也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴4(1+b)2-4×2a×0=0
∴b=-1.…(5分)
∴a=-1.
f(x)=
2x
x+1
.…(6分)
(Ⅱ)解法一:∵a1=
2
3
,an+1=f(an),
a2=f(a1)=f(
2
3
)=
4
5
a3=f(a2)=f(
4
5
)=
8
9
a4=f(a3)=f(
8
9
)=
16
17
,…(7分)
猜想,an=
2n
2n+1
(n∈N*)
.…(8分)
下面用数学归纳法证明:
①当n=1时,左边=a1=
2
3
,右边=
21
21+1
=
2
3
,∴命题成立.…(10分)
②假设n=k时,命题成立,即ak=
2k
2k+1

当 n=k+1时,ak+1=f(ak)=
2ak
ak+1
=
2k
2k+1
2k
2k+1
+1
=
2k+1
2k+1+1

∴当 n=k+1时,命题成立.…(12分)
由①②可得,当n∈N*时,有an=
2n
2n+1
.…(13分)
bn=
an
1-an
=2n,(n∈N*)

bn+1
bn
=2,(n∈N*)
a1=2
∴{bn}是首项为2,公比为2的等比数列,其通项公式为bn=2n.…(14分)
解法二:∵a1=
2
3
an+1=f(an)=
2an
an+1

1
an+1
=
1
2
(
1
an
+1)
…(8分)
1
an+1
-1=
1
2
(
1
an
-1)
,…(10分)
1
bn+1
=
1
2bn
bn+1=2bn(n∈N+)…(12分)
则数列{bn}是以b1=2为首项2为公比的等比数列,bn=2n,(n∈N*)…(14分)
点评:本题以函数为载体,考查函数的性质,考查函数解析式的求解,考查数列通项公式的求解,考查数学归纳法的运用,正确理解题意是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=x-2m2+m+3(m∈Z)为偶函数,且f(3)<f(5).
(1)求m的值,并确定f(x)的解析式;
(2)若g(x)=loga[f(x)-ax](a>0且a≠1),是否存在实数a,使g(x)在区间[2,3]上的最大值为2,若存在,请求出a的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:浙江省东阳中学高三10月阶段性考试数学理科试题 题型:022

已知函数f(x)的图像在[a,b]上连续不断,f1(x)=min{f(t)|a≤t≤x}(x∈[a,b]),f2(x)=max{f(t)|a≤t≤x}(x∈[a,b]),其中,min{f(x)|x∈D}表示函数f(x)在D上的最小值,max{f(x)|x∈D}表示函数f(x)在D上的最大值,若存在最小正整数k,使得f2(x)-f1(x)≤k(x-a)对任意的x∈[a,b]成立,则称函数f(x)为[a,b]上的“k阶收缩函数”.已知函数f(x)=x2,x∈[-1,4]为[-1,4]上的“k阶收缩函数”,则k的值是_________.

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:2009-2010学年河南省许昌市长葛三高高三第七次考试数学试卷(理科)(解析版) 题型:选择题

已知函数f(x)、g(x),下列说法正确的是( )
A.f(x)是奇函数,g(x)是奇函数,则f(x)+g(x)是奇函数
B.f(x)是偶函数,g(x)是偶函数,则f(x)+g(x)是偶函数
C.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)一定是奇函数或偶函数
D.f(x)是奇函数,g(x)是偶函数,则f(x)+g(x)可以是奇函数或偶函数

查看答案和解析>>

同步练习册答案