精英家教网 > 高中数学 > 题目详情
15.已知f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)最小正周期;
(2)求f(x)最大值;
(3)求f(x)单调递增区间.

分析 (1)f利用二倍角余弦公式及变形,两角和的正弦公式化简解析式,由三角函数的周期公式求出(x)最小正周期;
(2)由正弦函数的最值求出f(x)的最大值;
(3)由正弦函数的增区间和整体思想求出f(x)单调递增区间.

解答 解:(1)由题意得,f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x
=$\frac{\sqrt{3}}{2}(1+cos2x)+\frac{1}{2}sin2x$=$sin(2x+\frac{π}{3})+\frac{\sqrt{3}}{2}$,
∴f(x)最小正周期T=$\frac{2π}{2}=π$;
(2)当$sin(2x+\frac{π}{3})=1$ 时,函数f(x)取到最大值是$1+\frac{\sqrt{3}}{2}$;
(3)由$-\frac{π}{2}+2kπ≤2x+\frac{π}{3}≤\frac{π}{2}+2kπ(k∈Z)$得,
$-\frac{5π}{12}+kπ≤x≤\frac{π}{12}+kπ(k∈Z)$,
∴f(x)单调递增区间是$[-\frac{5π}{12}+kπ,\frac{π}{12}+kπ](k∈Z)$.

点评 本题考查了二倍角余弦公式及变形,两角和的正弦公式,以及正弦函数的图象与性质,考查整体思想,化简、变形能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.设集合A={x|x2<2x+8,x∈N},B={y|y=2x,x≤2,x∈N},用列举法表示A,B和A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,PA是圆的切线,A是切点,M是PA的中点,过点M作圆的割线交圆于点C,B,连接PB,PC分别交圆于点E,F,EF与BC的交点为N.
求证:
(Ⅰ)EF∥PA;
(Ⅱ)MA•NE=MC•NB.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在直角坐标系xOy中,曲线C1:$\left\{\begin{array}{l}{x=tcosα}\\{y=tsinα+1}\end{array}\right.$(α为参数,t>0),曲线C2:$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}s+1}\\{y=\frac{\sqrt{2}}{2}s-1}\end{array}\right.$(s为参数),在以O为极点,x轴正半轴为极轴的极坐标系中,曲线C3:ρcosθ-ρsinθ=2,记曲线C2与C3的交点为P.
(Ⅰ)求点P的直角坐标;
(Ⅱ)当曲线C1与C3有且只有一个公共点时,C1与C2相交于A、B两点,求|PA|2+|PB|2的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知α为第二象限角,sinα=$\frac{3}{5}$,则tan2α=$-\frac{24}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.如图,在AB为直径的半圆O上取一点C,连接AC并延长与过B点的切线相交于点D,以C为切点作切线交AB的延长线于G,交BD于F.
(1)求证:DF=BF;
(2)若AC=CG,求$\frac{AG}{CG}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,△ABC内接于⊙O,AD是⊙O的切线,切点为A,∠DAC的平分线交⊙O于E,且满足AB⊥AE.
(I)证明:∠BAC=∠BCA;
(Ⅱ)设⊙O的半径为1,AC=$\sqrt{3}$,CE的延长线交AD于点F,求△AFC外接圆的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数y=$\frac{1}{3}$x3+x2+ax在x∈R上单调递增,则实数a的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.函数f(x)的图象如图所示,则导函数y=f′(x)的图象可能是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案