精英家教网 > 高中数学 > 题目详情
4.函数y=$\frac{1}{3}$x3+x2+ax在x∈R上单调递增,则实数a的取值范围是[1,+∞).

分析 根据函数单调递增,则等价为f′(x)≥0恒成立,利用二次函数的图象和性质即可得到结论.

解答 解:若函数y=$\frac{1}{3}$x3+x2+ax在R上单调递增,
则y′≥0恒成立,
即y′=x2+2x+a≥0恒成立,
则判别式△=4-4a≤0,
即a≥1,
故实数a的取值范围是[1,+∞).
故答案为:[1,+∞).

点评 本题主要考查函数单调性和导数之间的关系,将函数单调递增转化为f′(x)≥0恒成立是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图,平行四边形ABEF与梯形ABCD所在的平面互相垂直,且AD∥BC,AD⊥AB,AB=BC=$\frac{1}{2}$AD,∠ABE=$\frac{π}{4}$,直线CE与平面ABEF所成角的正切值为$\sqrt{2}$.
(1)证明:AF⊥DE;
(2)求二面角D-AE-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=$\sqrt{3}$cos2x+$\frac{1}{2}$sin2x.
(1)求f(x)最小正周期;
(2)求f(x)最大值;
(3)求f(x)单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,现给出下列命题:
①f(x)-4=0和f′(x)=0有一个相同的实根    
②f(x)=0和f′(x)=0有一个相同的实根
③f(x)+3=0的任一实根大于f(x)-1=0的任一实根 
④f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中错误的命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.求证:sinx>x-$\frac{x^3}{6}$,x∈(0,$\frac{π}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=x3-3x
(1)求函数f(x)的单调区间,并求函数f(x)的极值;
(2)若方程x3-3x-a+1=0有三个相异的实数根,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=x3+bx2+cx+d的图象如图,则函数y=f′(x)的单调减区间为(  )
A.[0,3)B.[-2,3]C.(-∞,$\frac{1}{2}$)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的方程是y=6,圆C的参数方程是$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)分别求直线l与圆C的极坐标方程;
(Ⅱ)射线OM:θ=α(0<α<$\frac{π}{2}$)与圆C的交点为O、P两点,与直线l的交于点M.射线ON:θ=α+$\frac{π}{2}$与圆C交于O,Q两点,与直线l交于点N,求$\frac{|OP|}{|OM|}$•$\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=$\frac{lnx}{x}$,e<a<b,则f(a),f(b)的大小关系为f(a)>f(b).

查看答案和解析>>

同步练习册答案