12£®Éèf£¨x£©=x3+bx2+cx+d£¬ÓÖkÊÇÒ»¸ö³£Êý£¬ÒÑÖªµ±k£¼0»òk£¾4ʱ£¬f£¨x£©-k=0Ö»ÓÐÒ»¸öʵ¸ù£»µ±0£¼k£¼4ʱ£¬f£¨x£©-k=0ÓÐÈý¸öÏàÒìʵ¸ù£¬ÏÖ¸ø³öÏÂÁÐÃüÌ⣺
¢Ùf£¨x£©-4=0ºÍf¡ä£¨x£©=0ÓÐÒ»¸öÏàͬµÄʵ¸ù    
¢Úf£¨x£©=0ºÍf¡ä£¨x£©=0ÓÐÒ»¸öÏàͬµÄʵ¸ù
¢Ûf£¨x£©+3=0µÄÈÎһʵ¸ù´óÓÚf£¨x£©-1=0µÄÈÎһʵ¸ù 
¢Üf£¨x£©+5=0µÄÈÎһʵ¸ùСÓÚf£¨x£©-2=0µÄÈÎһʵ¸ù£®
ÆäÖдíÎóµÄÃüÌâµÄ¸öÊýÊÇ£¨¡¡¡¡£©
A£®4B£®3C£®2D£®1

·ÖÎö ÓÉÒÑÖªÖÐf£¨x£©=x3+bx2+cx+d£¬µ±k£¼0»òk£¾4ʱ£¬f£¨x£©-k=0Ö»ÓÐÒ»¸öʵ¸ù£»µ±0£¼k£¼4ʱ£¬f£¨x£©-k=0ÓÐÈý¸öÏàÒìʵ¸ù£¬¹Êº¯Êý¼´Îª¼«´óÖµ£¬ÓÖÓм«Ð¡Öµ£¬ÇÒ¼«´óֵΪ4£¬¼«Ð¡ÖµÎª0£¬·ÖÎö³öº¯Êý¼òµ¥µÄͼÏóºÍÐÔÖʺó£¬ÖðÒ»·ÖÎöËĸö½áÂÛµÄÕýÎ󣬼´¿ÉµÃµ½´ð°¸£®

½â´ð ½â£º¡ßf£¨x£©=x3+bx2+cx+d£¬
µ±k£¼0»òk£¾4ʱ£¬f£¨x£©-k=0Ö»ÓÐÒ»¸öʵ¸ù£»
µ±0£¼k£¼4ʱ£¬f£¨x£©-k=0ÓÐÈý¸öÏàÒìʵ¸ù£¬
¹Êº¯Êý¼´Îª¼«´óÖµ£¬ÓÖÓм«Ð¡Öµ£¬ÇÒ¼«´óֵΪ4£¬¼«Ð¡ÖµÎª0
¹Êf£¨x£©-4=0Óëf'£¨x£©=0ÓÐÒ»¸öÏàͬµÄʵ¸ù£¬¼´¼«´óÖµµã£¬¹Ê£¨1£©ÕýÈ·£»
f£¨x£©=0Óëf'£¨x£©=0ÓÐÒ»¸öÏàͬµÄʵ¸ù£¬¼´¼«Ð¡Öµµã£¬¹Ê£¨2£©ÕýÈ·£»
f£¨x£©+3=0ÓÐһʵ¸ùСÓÚº¯Êý×îСµÄÁãµã£¬f£¨x£©-1=0ÓÐÈý¸öʵ¸ù¾ù´óÓÚº¯Êý×îСµÄÁãµã£¬¹Ê£¨3£©´íÎó£»
f£¨x£©+3=0ÓÐһʵ¸ùСÓÚº¯Êý×îСµÄÁãµã£¬f£¨x£©-2=0ÓÐÈý¸öʵ¸ù¾ù´óÓÚº¯Êý×îСµÄÁãµã£¬¹Ê£¨4£©´íÎó£»
¹ÊÑ¡£ºD£®

µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊǸùµÄ´æÔÚÐÔ¼°¸ùµÄ¸öÊýÅжϣ¬ÆäÖиù¾ÝÒÑÖªÌõ¼þ£¬Åжϳöº¯Êýf£¨x£©=x3+bx2+cx+dµÄͼÏóºÍÐÔÖÊÊǽâ´ð±¾ÌâµÄ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®ÒÑÖªº¯Êýf£¨x£©=kex-x2£¬£¨ÆäÖÐk¡ÊR£¬eÊÇ×ÔÈ»¶ÔÊýµÄµ×Êý£©£¬
£¨¢ñ£©Èôk=2£¬µ±x¡Ê£¨0£¬+¡Þ£©Ê±£¬ÊԱȽÏf£¨x£©Óë2µÄ´óС£»
£¨¢ò£©Èôº¯Êýf£¨x£©ÓÐÁ½¸ö¼«Öµµãx1£¬x2£¬ÇÒx1£¼x2£¬
£¨i£©ÇókµÄȡֵ·¶Î§£»
£¨ii£©Ö¤Ã÷0£¼f£¨x1£©£¼1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC1£º$\left\{\begin{array}{l}{x=tcos¦Á}\\{y=tsin¦Á+1}\end{array}\right.$£¨¦ÁΪ²ÎÊý£¬t£¾0£©£¬ÇúÏßC2£º$\left\{\begin{array}{l}{x=-\frac{\sqrt{2}}{2}s+1}\\{y=\frac{\sqrt{2}}{2}s-1}\end{array}\right.$£¨sΪ²ÎÊý£©£¬ÔÚÒÔOΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬ÇúÏßC3£º¦Ñcos¦È-¦Ñsin¦È=2£¬¼ÇÇúÏßC2ÓëC3µÄ½»µãΪP£®
£¨¢ñ£©ÇóµãPµÄÖ±½Ç×ø±ê£»
£¨¢ò£©µ±ÇúÏßC1ÓëC3ÓÐÇÒÖ»ÓÐÒ»¸ö¹«¹²µãʱ£¬C1ÓëC2ÏཻÓÚA¡¢BÁ½µã£¬Çó|PA|2+|PB|2µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

20£®Èçͼ£¬ÔÚABΪֱ¾¶µÄ°ëÔ²OÉÏȡһµãC£¬Á¬½ÓAC²¢ÑÓ³¤Óë¹ýBµãµÄÇÐÏßÏཻÓÚµãD£¬ÒÔCΪÇеã×÷ÇÐÏß½»ABµÄÑÓ³¤ÏßÓÚG£¬½»BDÓÚF£®
£¨1£©ÇóÖ¤£ºDF=BF£»
£¨2£©ÈôAC=CG£¬Çó$\frac{AG}{CG}$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÈçͼËùʾ£¬¡÷ABCÄÚ½ÓÓÚ¡ÑO£¬ADÊÇ¡ÑOµÄÇÐÏߣ¬ÇеãΪA£¬¡ÏDACµÄƽ·ÖÏß½»¡ÑOÓÚE£¬ÇÒÂú×ãAB¡ÍAE£®
£¨I£©Ö¤Ã÷£º¡ÏBAC=¡ÏBCA£»
£¨¢ò£©Éè¡ÑOµÄ°ë¾¶Îª1£¬AC=$\sqrt{3}$£¬CEµÄÑÓ³¤Ïß½»ADÓÚµãF£¬Çó¡÷AFCÍâ½ÓÔ²µÄÃæ»ý£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

17£®Èçͼ£¬ÒÑÖªÖ±ÏßPAÓë°ëÔ²OÇÐÓÚµãA£¬PO½»°ëÔ²ÓÚB£¬CÁ½µã£¬AD¡ÍPOÓÚµãD£®
£¨¢ñ£©ÇóÖ¤£º¡ÏPAB=¡ÏBAD£»
£¨¢ò£©ÇóÖ¤£ºPB•CD=PC•BD£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®º¯Êýy=$\frac{1}{3}$x3+x2+axÔÚx¡ÊRÉϵ¥µ÷µÝÔö£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇ[1£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªÔ²ÄÚ½ÓËıßÐÎABCDÖУ¬AB=BC=3£¬CD=4£¬DA=8£¬Ôò¸ÃÔ²µÄ°ë¾¶Îª3£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®Éèf£¨x£©ÊǶ¨ÒåÔÚRÉϵÄżº¯Êý£¬¶Ôx¡ÊR¶¼ÓÐf£¨x-2£©=f£¨x+2£©£¬ÇÒµ±x¡Ê[-2£¬0]ʱ£¬f£¨x£©=£¨$\frac{1}{2}$£©x-1£¬ÈôÔÚÇø¼ä£¨-2£¬6]ÄÚ¹ØÓÚxµÄ·½³Ìf£¨x£©-loga£¨x+2£©=0Ç¡ÓÐ5¸ö²»Í¬µÄʵÊý¸ù£¬ÔòaµÄȡֵ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨1£¬2£©B£®£¨2£¬$\root{3}{12}$£©C£®£¨1£¬$\root{3}{4}$£©D£®£¨2£¬$\root{3}{10}$£©

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸