精英家教网 > 高中数学 > 题目详情
2.设f(x)是定义在R上的偶函数,对x∈R都有f(x-2)=f(x+2),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0恰有5个不同的实数根,则a的取值范围是(  )
A.(1,2)B.(2,$\root{3}{12}$)C.(1,$\root{3}{4}$)D.(2,$\root{3}{10}$)

分析 由f(x)=-f(x+2),推出函数的周期是4,根据函数f(x)是偶函数,得到函数f(x)在一个周期内的图象,利用方程和函数之间的关系,转化为两个函数的交点个数问题,利用数形结合确定满足的条件即可得到结论.

解答 解:由f(x-2)=f(x+2),得f(x+4)=f(x),即函数f(x)的周期为4,
∵当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,
∴若x∈[0,2],则-x∈[-2,0]
则f(-x)=$(\frac{1}{2})^{-x}-1={2}^{x}-1$,
∵f(x)是偶函数,
∴f(-x)=$(\frac{1}{2})^{-x}-1={2}^{x}-1$=f(x),
即f(x)=2x-1,x∈[0,2],
由f(x)-loga(x+2)=0得f(x)=loga(x+2),
作出函数f(x)的图象如图:如0<a<1,函数g(x)=loga(x+2)单调递减,此时只有1个交点,不满足条件,(虚线图象).
当a>1时,要使方程f(x)-loga(x+2)=0恰有5个不同的实数根,
则等价为函数f(x)与g(x)=loga(x+2)有5个不同的交点,
则满足A(6,3)在g(x)的上方,B(10,3)在g(x)的下方,
即$\left\{\begin{array}{l}{g(6)=lo{g}_{a}8<3}\\{g(10)=lo{g}_{a}12>3}\end{array}\right.$,即$\left\{\begin{array}{l}{{a}^{3}>8}\\{{a}^{3}<12}\end{array}\right.$,
即$\left\{\begin{array}{l}{a>2}\\{a<\root{3}{12}}\end{array}\right.$,解得,2<a<$\root{3}{12}$
故a的取值范围是(2,$\root{3}{12}$),
故选:B.

点评 本题主要考查函数零点的个数判断,利用函数和方程之间的关系转化为两个函数的交点个数问题,利用分段函数的表达式,作出函数f(x)的图象是解决本题的关键.综合性较强,难度较大.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.设f(x)=x3+bx2+cx+d,又k是一个常数,已知当k<0或k>4时,f(x)-k=0只有一个实根;当0<k<4时,f(x)-k=0有三个相异实根,现给出下列命题:
①f(x)-4=0和f′(x)=0有一个相同的实根    
②f(x)=0和f′(x)=0有一个相同的实根
③f(x)+3=0的任一实根大于f(x)-1=0的任一实根 
④f(x)+5=0的任一实根小于f(x)-2=0的任一实根.
其中错误的命题的个数是(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在直角坐标系xOy中,直线l的方程是y=6,圆C的参数方程是$\left\{\begin{array}{l}{x=cosφ}\\{y=1+sinφ}\end{array}\right.$(φ为参数).以原点O为极点,x轴的非负半轴为极轴建立极坐标系.
(Ⅰ)分别求直线l与圆C的极坐标方程;
(Ⅱ)射线OM:θ=α(0<α<$\frac{π}{2}$)与圆C的交点为O、P两点,与直线l的交于点M.射线ON:θ=α+$\frac{π}{2}$与圆C交于O,Q两点,与直线l交于点N,求$\frac{|OP|}{|OM|}$•$\frac{|OQ|}{|ON|}$的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数y=f(x)是定义在R上的奇函数,且当x∈(-∞,0)时不等式f(x)+xf′(x)<0成立,若a=3f(3),b=-2f(-2),c=f(1),则a,b,c的大小关系是(  )
A.a>b>cB.c>b>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,两个以O为圆心的同心圆,AB切大圆于B,AC切小圆于C,交大圆于D,E,AB=12,AO=15,AD=8,求两圆的半径.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=|x-2|-|x-5|.
(1)求函数f(x)的值域;
(2)若?x∈R,不等式f(x)≥t2-$\frac{7}{2}$t恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若函数f(x)=$\frac{lnx}{x}$,e<a<b,则f(a),f(b)的大小关系为f(a)>f(b).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.直线$\left\{\begin{array}{l}{x=3+tcos70°}\\{y=-tsin70}\end{array}\right.$(t为参数)的倾斜角为(  )
A.20°B.70°C.110°D.160°

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知:
sin230°+sin290°+sin2150°=$\frac{3}{2}$
sin210°+sin270°+sin2130°=$\frac{3}{2}$
sin25°+sin265°+sin2125°=$\frac{3}{2}$
通过观察上述两等式的规律,请你写出一般性的命题,并给出的证明.

查看答案和解析>>

同步练习册答案